SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hoban Sean) srt2:(2022)"

Sökning: WFRF:(Hoban Sean) > (2022)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kershaw, Francine, et al. (författare)
  • The Coalition for Conservation Genetics : Working across organizations to build capacity and achieve change in policy and practice
  • 2022
  • Ingår i: Conservation Science and Practice. - : Wiley. - 2578-4854. ; 4:4
  • Tidskriftsartikel (refereegranskat)abstract
    • The Coalition for Conservation Genetics (CCG) brings together four eminent organizations with the shared goal of improving the integration of genetic information into conservation policy and practice. We provide a historical context of conservation genetics as a field and reflect on current barriers to conserving genetic diversity, highlighting the need for collaboration across traditional divides, international partnerships, and coordinated advocacy. We then introduce the CCG and illustrate through examples how a coalition approach can leverage complementary expertise and improve the organizational impact at multiple levels. The CCG has proven particularly successful at implementing large synthesis-type projects, training early-career scientists, and advising policy makers. Achievements to date highlight the potential for the CCG to make effective contributions to practical conservation policy and management that no one “parent” organization could achieve on its own. Finally, we reflect on the lessons learned through forming the CCG, and our vision for the future.
  •  
2.
  • O'Brien, David, et al. (författare)
  • Bringing together approaches to reporting on within species genetic diversity
  • 2022
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 59:9, s. 2227-2233
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is one of the three main levels of biodiversity recognised in the Convention on Biological Diversity (CBD). Fundamental for species adaptation to environmental change, genetic diversity is nonetheless under-reported within global and national indicators. When it is reported, the focus is often narrow and confined to domesticated or other commercial species.Several approaches have recently been developed to address this shortfall in reporting on genetic diversity of wild species. While multiplicity of approaches is helpful in any development process, it can also lead to confusion among policy makers and heighten a perception that conservation genetics is too abstract to be of use to organisations and governments.As the developers of five of the different approaches, we have come together to explain how various approaches relate to each other and propose a scorecard, as a unifying reporting mechanism for genetic diversity.Policy implications. We believe the proposed combined approach captures the strengths of its components and is practical for all nations and subnational governments. It is scalable and can be used to evaluate species conservation projects as well as genetic conservation projects.
  •  
3.
  • Thurfjell, Henrik, et al. (författare)
  • Practical application of indicators for genetic diversity in CBD post-2020 global biodiversity framework implementation
  • 2022
  • Ingår i: Ecological Indicators. - : Elsevier BV. - 1470-160X .- 1872-7034. ; 142
  • Tidskriftsartikel (refereegranskat)abstract
    • Genetic diversity is a key aspect of biological variation for the adaptability and survival of populations of species and must be monitored to assure maintenance. We used data from the Swedish Red List 2020 and from published reviews to apply three indicators for genetic diversity proposed for the post-2020 Global Biodiversity Framework of the Convention on Biological Diversity (CBD). We studied a wide range of taxonomic groups, and made more detailed indicator assessments for mammals and herptiles.For indicator 1, the proportion of populations with effective population size Ne > 500, 33% of 22,557 investigated species had a population size estimate that could be used as a proxy for Ne. For herptiles and mammals, 70% and 49% of populations of species, respectively, likely had Ne > 500.Data for evaluation of indicator 2, the proportion of remaining populations or historical range, was available for 20% of all species evaluated for the Red List. Meanwhile, 32% of the herptile and 84% of the mammal populations are maintaining their populations and range.For indicator 3, the number of species or populations in which genetic diversity is monitored using DNA-based methods, there are genetic studies on 3% of all species, and 0.3% are beeing monitored genetically. In contrast, 68% of mammals and 29% of herptiles are studied using DNA, and 8% of mammals and 24% of herptiles are genetically monitored.We conclude that the Red List provides data that are suitable for evaluating the genetic indicators, but the data quality can be improved. We also show that the genetic indicators capture conservation issues of genetic erosion that the Red List misses.There is a synergy in estimating the genetic indicators in parallel with the Red Listing process. We propose that indicator values could be included in national Red Listing as a new category - “genetically threatened”, based on the genetic indicators.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy