SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hock C) srt2:(2010-2014)"

Sökning: WFRF:(Hock C) > (2010-2014)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Pfeffer, W. Tad, et al. (författare)
  • The Randolph Glacier Inventory : a globally complete inventory of glaciers
  • 2014
  • Ingår i: Journal of Glaciology. - 0022-1430 .- 1727-5652. ; 60:221, s. 537-552
  • Tidskriftsartikel (refereegranskat)abstract
    • The Randolph Glacier Inventory (RGI) is a globally complete collection of digital outlines of glaciers, excluding the ice sheets, developed to meet the needs of the Fifth Assessment of the Intergovernmental Panel on Climate Change for estimates of past and future mass balance. The RGI was created with limited resources in a short period. Priority was given to completeness of coverage, but a limited, uniform set of attributes is attached to each of the similar to 198 000 glaciers in its latest version, 3.2. Satellite imagery from 1999-2010 provided most of the outlines. Their total extent is estimated as 726 800 +/- 34 000 km(2). The uncertainty, about +/- 5%, is derived from careful single-glacier and basin-scale uncertainty estimates and comparisons with inventories that were not sources for the RGI. The main contributors to uncertainty are probably misinterpretation of seasonal snow cover and debris cover. These errors appear not to be normally distributed, and quantifying them reliably is an unsolved problem. Combined with digital elevation models, the RGI glacier outlines yield hypsometries that can be combined with atmospheric data or model outputs for analysis of the impacts of climatic change on glaciers. The RGI has already proved its value in the generation of significantly improved aggregate estimates of glacier mass changes and total volume, and thus actual and potential contributions to sea-level rise.
  •  
2.
  • Kienholz, C., et al. (författare)
  • A new method for deriving glacier centerlines applied to glaciers in Alaska and northwest Canada
  • 2014
  • Ingår i: The Cryosphere. - : Copernicus GmbH. - 1994-0416 .- 1994-0424. ; 8:2, s. 503-519
  • Tidskriftsartikel (refereegranskat)abstract
    • This study presents a new method to derive centerlines for the main branches and major tributaries of a set of glaciers, requiring glacier outlines and a digital elevation model (DEM) as input. The method relies on a "cost grid-least-cost route approach" that comprises three main steps. First, termini and heads are identified for every glacier. Second, centerlines are derived by calculating the least-cost route on a previously established cost grid. Third, the centerlines are split into branches and a branch order is allocated. Application to 21 720 glaciers in Alaska and northwest Canada (Yukon, British Columbia) yields 41 860 centerlines. The algorithm performs robustly, requiring no manual adjustments for 87.8% of the glaciers. Manual adjustments are required primarily to correct the locations of glacier heads (7.0% corrected) and termini (3.5% corrected). With corrected heads and termini, only 1.4% of the derived centerlines need edits. A comparison of the lengths from a hydrological approach to the lengths from our longest centerlines reveals considerable variation. Although the average length ratio is close to unity, only similar to 50% of the 21 720 glaciers have the two lengths within 10% of each other. A second comparison shows that our centerline lengths between lowest and highest glacier elevations compare well to our longest centerline lengths. For > 70% of the 4350 glaciers with two or more branches, the two lengths are within 5% of each other. Our final product can be used for calculating glacier length, conducting length change analyses, topological analyses, or flowline modeling.
  •  
3.
  • Pioro, Michal, et al. (författare)
  • Optimized IP-based vs. explicit paths for one-to-one backup in MPLS fast reroute
  • 2010
  • Konferensbidrag (refereegranskat)abstract
    • Primary and backup paths in MPLS fast reroute (FRR) may be established as shortest paths according to the administrative link costs of the IP control plane, or as explicitly calculated arbitrary paths. In both cases, the path layout can be optimized so that the maximum link utilization for a set of considered failure scenarios is minimized. In this paper, we propose a linear program for the optimization of the path layout for explicitly calculated paths, which can either produce single paths and route entire traffic along those paths, or generate multiple paths and spread the traffic among those paths providing load balancing. We compare the resulting lowest maximum link utilization in both cases with the lowest maximum link utilization that can be obtained by optimizing unique IP-based paths. Our results quantify the gain in resource efficiency usage provided by optimized explicit multiple paths or explicit single paths as compared to optimized IP-based paths.
  •  
4.
  • Żukowski, C., et al. (författare)
  • Compact Node-Link Formulations for the Optimal Single-Path MPLS Fact Reroute Layout
  • 2011
  • Ingår i: Advances in Electronics and Telecommunications. - 2081-8580. ; 2:3, s. 55-60
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper discusses compact node-link formulations for MPLS fast reroute optimal single path layout. We propose mathematical formulations for MPLS fast reroute local protection mechanisms. In fact, we compare one-to-one (also called detour) local protection and many-to-one (also called facility backup) local protection mechanisms with respect to minimized maximum link utilization. The optimal results provided by the node-links are compared with the suboptimal results provided by algorithms based on non-compact linear programming (path generation) approach and IP-based approach.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy