SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holmans P) srt2:(2010-2014)"

Sökning: WFRF:(Holmans P) > (2010-2014)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Ruderfer, D M, et al. (författare)
  • Polygenic dissection of diagnosis and clinical dimensions of bipolar disorder and schizophrenia.
  • 2014
  • Ingår i: Molecular psychiatry. - : Springer Science and Business Media LLC. - 1476-5578 .- 1359-4184. ; 19:9, s. 1017-1024
  • Tidskriftsartikel (refereegranskat)abstract
    • Bipolar disorder and schizophrenia are two often severe disorders with high heritabilities. Recent studies have demonstrated a large overlap of genetic risk loci between these disorders but diagnostic and molecular distinctions still remain. Here, we perform a combined genome-wide association study (GWAS) of 19779 bipolar disorder (BP) and schizophrenia (SCZ) cases versus 19423 controls, in addition to a direct comparison GWAS of 7129 SCZ cases versus 9252 BP cases. In our case-control analysis, we identify five previously identified regions reaching genome-wide significance (CACNA1C, IFI44L, MHC, TRANK1 and MAD1L1) and a novel locus near PIK3C2A. We create a polygenic risk score that is significantly different between BP and SCZ and show a significant correlation between a BP polygenic risk score and the clinical dimension of mania in SCZ patients. Our results indicate that first, combining diseases with similar genetic risk profiles improves power to detect shared risk loci and second, that future direct comparisons of BP and SCZ are likely to identify loci with significant differential effects. Identifying these loci should aid in the fundamental understanding of how these diseases differ biologically. These findings also indicate that combining clinical symptom dimensions and polygenic signatures could provide additional information that may someday be used clinically.Molecular Psychiatry advance online publication, 26 November 2013;
  •  
7.
  •  
8.
  • Lips, E. S., et al. (författare)
  • Functional gene group analysis identifies synaptic gene groups as risk factor for schizophrenia
  • 2012
  • Ingår i: Molecular Psychiatry. - : Springer Science and Business Media LLC. - 1359-4184 .- 1476-5578. ; 17:10, s. 996-1006
  • Tidskriftsartikel (refereegranskat)abstract
    • Schizophrenia is a highly heritable disorder with a polygenic pattern of inheritance and a population prevalence of similar to 1%. Previous studies have implicated synaptic dysfunction in schizophrenia. We tested the accumulated association of genetic variants in expert-curated synaptic gene groups with schizophrenia in 4673 cases and 4965 healthy controls, using functional gene group analysis. Identifying groups of genes with similar cellular function rather than genes in isolation may have clinical implications for finding additional drug targets. We found that a group of 1026 synaptic genes was significantly associated with the risk of schizophrenia (P = 7.6 x 10(-11)) and more strongly associated than 100 randomly drawn, matched control groups of genetic variants (P < 0.01). Subsequent analysis of synaptic subgroups suggested that the strongest association signals are derived from three synaptic gene groups: intracellular signal transduction (P = 2.0 x 10(-4)), excitability (P = 9.0 x 10(-4)) and cell adhesion and trans-synaptic signaling (P = 2.4 x 10(-3)). These results are consistent with a role of synaptic dysfunction in schizophrenia and imply that impaired intracellular signal transduction in synapses, synaptic excitability and cell adhesion and trans-synaptic signaling play a role in the pathology of schizophrenia. Molecular Psychiatry (2012) 17, 996-1006; doi:10.1038/mp.2011.117; published online 20 September 2011
  •  
9.
  • Moskvina, V, et al. (författare)
  • Genetic differences between five European populations
  • 2010
  • Ingår i: Human heredity. - : S. Karger AG. - 1423-0062 .- 0001-5652. ; 70:2, s. 141-149
  • Tidskriftsartikel (refereegranskat)abstract
    • <i>Aims:</i> We sought to examine the magnitude of the differences in SNP allele frequencies between five European populations (Scotland, Ireland, Sweden, Bulgaria and Portugal) and to identify the loci with the greatest differences. <i>Methods:</i> We performed a population-based genome-wide association analysis with Affymetrix 6.0 and 5.0 arrays. We used a 4 degrees of freedom χ<sup>2</sup> test to determine the magnitude of stratification for each SNP. We then examined the genes within the most stratified regions, using a highly conservative cutoff of p < 10<sup>–45</sup>. <i>Results:</i> We found 40,593 SNPs which are genome-wide significantly (p ≤ 10<sup>–8</sup>) stratified between these populations. The largest differences clustered in gene ontology categories for immunity and pigmentation. Some of the top loci span genes that have already been reported as highly stratified: genes for hair color and pigmentation <i>(HERC2, EXOC2, IRF4)</i>, the LCT gene, genes involved in NAD metabolism, and in immunity (HLA and the Toll-like receptor genes TLR10, TLR1, TLR6). However, several genes have not previously been reported as stratified within European populations, indicating that they might also have provided selective advantages: several zinc finger genes, two genes involved in glutathione synthesis or function, and most intriguingly, <i>FOXP2</i>, implicated in speech development. <i>Conclusion:</i> Our analysis demonstrates that many SNPs show genome-wide significant differences within European populations and the magnitude of the differences correlate with the geographical distance. At least some of these differences are due to the selective advantage of polymorphisms within these loci.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy