SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Holme Elisabeth 1947 ) srt2:(2015-2016)"

Sökning: WFRF:(Holme Elisabeth 1947 ) > (2015-2016)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Björkman, Kristoffer, et al. (författare)
  • Broad phenotypic variability in patients with complex I deficiency due to mutations in NDUFS1 and NDUFV1.
  • 2015
  • Ingår i: Mitochondrion. - : Elsevier BV. - 1872-8278 .- 1567-7249. ; 21, s. 33-40
  • Tidskriftsartikel (refereegranskat)abstract
    • We report clinical, metabolic, genetic and neuroradiological findings in five patients from three different families with isolated complex I deficiency. Genetic analysis revealed mutations in NDUFS1 in three patients and in NDUFV1 in two patients. Four of the mutations are novel and affect amino acid residues that either are invariant among species or conserved in their properties. The presented clinical courses are characterized by leukoencephalopathy or early death and expand the already heterogeneous phenotypic spectrum. A literature review was performed, showing that patients with mutations in NDUFS1 in general have a worse prognosis than patients with mutations in NDUFV1.
  •  
2.
  • Burda, P, et al. (författare)
  • Characterization and review of MTHFD1 deficiency: four new patients, cellular delineation and response to folic and folinic acid treatment.
  • 2015
  • Ingår i: Journal of Inherited Metabolic Disease. - : Wiley. - 0141-8955 .- 1573-2665. ; 38:5, s. 863-872
  • Tidskriftsartikel (refereegranskat)abstract
    • In the folate cycle MTHFD1, encoded by MTHFD1, is a trifunctional enzyme containing 5,10-methylenetetrahydrofolate dehydrogenase, 5,10-methenyltetrahydrofolate cyclohydrolase and 10-formyltetrahydrofolate synthetase activity. To date, only one patient with MTHFD1 deficiency, presenting with hyperhomocysteinemia, megaloblastic anaemia, hemolytic uremic syndrome (HUS) and severe combined immunodeficiency, has been identified (Watkins et al J Med Genet 48:590-2, 2011). We now describe four additional patients from two different families. The second patient presented with hyperhomocysteinemia, megaloblastic anaemia, HUS, microangiopathy and retinopathy; all except the retinopathy resolved after treatment with hydroxocobalamin, betaine and folinic acid. The third patient developed megaloblastic anaemia, infection, autoimmune disease and moderate liver fibrosis but not hyperhomocysteinemia, and was successfully treated with a regime that included and was eventually reduced to folic acid. The other two, elder siblings of the third patient, died at 9weeks of age with megaloblastic anaemia, infection and severe acidosis and had MTFHD1 deficiency diagnosed retrospectively. We identified a missense mutation (c.806C>T, p.Thr296Ile) and a splice site mutation (c.1674G>A) leading to exon skipping in the second patient, while the other three harboured a missense mutation (c.146C>T, p.Ser49Phe) and a premature stop mutation (c.673G>T, p.Glu225*), all of which were novel. Patient fibroblast studies revealed severely reduced methionine formation from [(14)C]-formate, which did not increase in cobalamin supplemented culture medium but was responsive to folic and folinic acid. These additional cases increase the clinical spectrum of this intriguing defect, provide in vitro evidence of disturbed methionine synthesis and substantiate the effectiveness of folic or folinic acid treatment.
  •  
3.
  • Carrozzo, Rosalba, et al. (författare)
  • Succinate-CoA ligase deficiency due to mutations in SUCLA2 and SUCLG1: phenotype and genotype correlations in 71 patients.
  • 2016
  • Ingår i: Journal of inherited metabolic disease. - : Wiley. - 1573-2665 .- 0141-8955. ; 39:2, s. 243-252
  • Tidskriftsartikel (refereegranskat)abstract
    • The encephalomyopathic mtDNA depletion syndrome with methylmalonic aciduria is associated with deficiency of succinate-CoA ligase, caused by mutations in SUCLA2 or SUCLG1. We report here 25 new patients with succinate-CoA ligase deficiency, and review the clinical and molecular findings in these and 46 previously reported patients.
  •  
4.
  • Sofou, Kalliopi, et al. (författare)
  • Whole exome sequencing reveals mutations in NARS2 and PARS2, encoding the mitochondrial asparaginyl-tRNA synthetase and prolyl-tRNA synthetase, in patients with Alpers syndrome.
  • 2015
  • Ingår i: Molecular genetics & genomic medicine. - : Wiley. - 2324-9269. ; 3:1, s. 59-68
  • Tidskriftsartikel (refereegranskat)abstract
    • Alpers syndrome is a progressive neurodegenerative disorder that presents in infancy or early childhood and is characterized by diffuse degeneration of cerebral gray matter. While mutations in POLG1, the gene encoding the gamma subunit of the mitochondrial DNA polymerase, have been associated with Alpers syndrome with liver failure (Alpers-Huttenlocher syndrome), the genetic cause of Alpers syndrome in most patients remains unidentified. With whole exome sequencing we have identified mutations in NARS2 and PARS2, the genes encoding the mitochondrial asparaginyl-and prolyl-tRNA synthetases, in two patients with Alpers syndrome. One of the patients was homozygous for a missense mutation (c.641C>T, p.P214L) in NARS2. The affected residue is predicted to be located in the stem of a loop that participates in dimer interaction. The other patient was compound heterozygous for a one base insertion (c.1130dupC, p.K378 fs*1) that creates a premature stop codon and a missense mutation (c.836C>T, p.S279L) located in a conserved motif of unknown function in PARS2. This report links for the first time mutations in these genes to human disease in general and to Alpers syndrome in particular.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy