SwePub
Sök i SwePub databas

  Extended search

Träfflista för sökning "WFRF:(Holzschuh A.) srt2:(2015-2019)"

Search: WFRF:(Holzschuh A.) > (2015-2019)

  • Result 1-5 of 5
Sort/group result
   
EnumerationReferenceCoverFind
1.
  • Kehoe, Laura, et al. (author)
  • Make EU trade with Brazil sustainable
  • 2019
  • In: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 364:6438, s. 341-
  • Journal article (other academic/artistic)
  •  
2.
  • De Palma, Adriana, et al. (author)
  • Predicting bee community responses to land-use changes : effects of geographic and taxonomic biases
  • 2016
  • In: Scientific Reports. - : Nature Publishing Group. - 2045-2322. ; 6, s. 1-14
  • Journal article (peer-reviewed)abstract
    • Land-use change and intensification threaten bee populations worldwide, imperilling pollination services. Global models are needed to better characterise, project, and mitigate bees' responses to these human impacts. The available data are, however, geographically and taxonomically unrepresentative; most data are from North America and Western Europe, overrepresenting bumblebees and raising concerns that model results may not be generalizable to other regions and taxa. To assess whether the geographic and taxonomic biases of data could undermine effectiveness of models for conservation policy, we have collated from the published literature a global dataset of bee diversity at sites facing land-use change and intensification, and assess whether bee responses to these pressures vary across 11 regions (Western, Northern, Eastern and Southern Europe; North, Central and South America; Australia and New Zealand; South East Asia; Middle and Southern Africa) and between bumblebees and other bees. Our analyses highlight strong regionally-based responses of total abundance, species richness and Simpson's diversity to land use, caused by variation in the sensitivity of species and potentially in the nature of threats. These results suggest that global extrapolation of models based on geographically and taxonomically restricted data may underestimate the true uncertainty, increasing the risk of ecological surprises.
  •  
3.
  • Lichtenberg, Elinor M., et al. (author)
  • A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes
  • 2017
  • In: Global Change Biology. - : Wiley. - 1354-1013 .- 1365-2486. ; 23:11, s. 4946-4957
  • Journal article (peer-reviewed)abstract
    • Agricultural intensification is a leading cause of global biodiversity loss, which can reduce the provisioning of ecosystem services in managed ecosystems. Organic farming and plant diversification are farm management schemes that may mitigate potential ecological harm by increasing species richness and boosting related ecosystem services to agroecosystems. What remains unclear is the extent to which farm management schemes affect biodiversity components other than species richness, and whether impacts differ across spatial scales and landscape contexts. Using a global metadataset, we quantified the effects of organic farming and plant diversification on abundance, local diversity (communities within fields), and regional diversity (communities across fields) of arthropod pollinators, predators, herbivores, and detritivores. Both organic farming and higher in-field plant diversity enhanced arthropod abundance, particularly for rare taxa. This resulted in increased richness but decreased evenness. While these responses were stronger at local relative to regional scales, richness and abundance increased at both scales, and richness on farms embedded in complex relative to simple landscapes. Overall, both organic farming and in-field plant diversification exerted the strongest effects on pollinators and predators, suggesting these management schemes can facilitate ecosystem service providers without augmenting herbivore (pest) populations. Our results suggest that organic farming and plant diversification promote diverse arthropod metacommunities that may provide temporal and spatial stability of ecosystem service provisioning. Conserving diverse plant and arthropod communities in farming systems therefore requires sustainable practices that operate both within fields and across landscapes.
  •  
4.
  • Garibaldi, Lucas A., et al. (author)
  • Trait matching of flower visitors and crops predicts fruit set better than trait diversity
  • 2015
  • In: Journal of Applied Ecology. - : Wiley. - 1365-2664 .- 0021-8901. ; 52:6, s. 1436-1444
  • Research review (peer-reviewed)abstract
    • Understanding the relationships between trait diversity, species diversity and ecosystem functioning is essential for sustainable management. For functions comprising two trophic levels, trait matching between interacting partners should also drive functioning. However, the predictive ability of trait diversity and matching is unclear for most functions, particularly for crop pollination, where interacting partners did not necessarily co-evolve. World-wide, we collected data on traits of flower visitors and crops, visitation rates to crop flowers per insect species and fruit set in 469 fields of 33 crop systems. Through hierarchical mixed-effects models, we tested whether flower visitor trait diversity and/or trait matching between flower visitors and crops improve the prediction of crop fruit set (functioning) beyond flower visitor species diversity and abundance. Flower visitor trait diversity was positively related to fruit set, but surprisingly did not explain more variation than flower visitor species diversity. The best prediction of fruit set was obtained by matching traits of flower visitors (body size and mouthpart length) and crops (nectar accessibility of flowers) in addition to flower visitor abundance, species richness and species evenness. Fruit set increased with species richness, and more so in assemblages with high evenness, indicating that additional species of flower visitors contribute more to crop pollination when species abundances are similar.Synthesis and applications. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Despite contrasting floral traits for crops world-wide, only the abundance of a few pollinator species is commonly managed for greater yield. Our results suggest that the identification and enhancement of pollinator species with traits matching those of the focal crop, as well as the enhancement of pollinator richness and evenness, will increase crop yield beyond current practices. Furthermore, we show that field practitioners can predict and manage agroecosystems for pollination services based on knowledge of just a few traits that are known for a wide range of flower visitor species. Editor's Choice
  •  
5.
  • Kleijn, David, et al. (author)
  • Delivery of crop pollination services is an insufficient argument for wild pollinator conservation.
  • 2015
  • In: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723. ; 6
  • Journal article (peer-reviewed)abstract
    • There is compelling evidence that more diverse ecosystems deliver greater benefits to people, and these ecosystem services have become a key argument for biodiversity conservation. However, it is unclear how much biodiversity is needed to deliver ecosystem services in a cost-effective way. Here we show that, while the contribution of wild bees to crop production is significant, service delivery is restricted to a limited subset of all known bee species. Across crops, years and biogeographical regions, crop-visiting wild bee communities are dominated by a small number of common species, and threatened species are rarely observed on crops. Dominant crop pollinators persist under agricultural expansion and many are easily enhanced by simple conservation measures, suggesting that cost-effective management strategies to promote crop pollination should target a different set of species than management strategies to promote threatened bees. Conserving the biological diversity of bees therefore requires more than just ecosystem-service-based arguments.
  •  
Skapa referenser, mejla, bekava och länka
  • Result 1-5 of 5
Type of publication
journal article (4)
research review (1)
Type of content
peer-reviewed (4)
other academic/artistic (1)
Author/Editor
Tscharntke, Teja (5)
Rundlöf, Maj (3)
Bommarco, Riccardo (3)
Carvalheiro, Luísa G ... (3)
Kremen, Claire (3)
Potts, Simon G. (3)
show more...
Williams, Neal M. (2)
Herzog, Felix (2)
Isaacs, Rufus (2)
Aizen, Marcelo A. (2)
Bartomeus, Ignasi (2)
Ekroos, Johan (1)
Rothhaupt, Karl-Otto (1)
Abrahamczyk, Stefan (1)
Weigend, Maximilian (1)
Farrell, Katharine N ... (1)
Clough, Yann (1)
Islar, Mine (1)
Krause, Torsten (1)
Uddling, Johan, 1972 (1)
Alexanderson, Helena (1)
Schneider, Christoph (1)
Battiston, Roberto (1)
Lukic, Marko (1)
Pereira, Laura (1)
Öckinger, Erik (1)
Persson, Anna S. (1)
Riggi, Laura (1)
Cattaneo, Claudio (1)
Franzén, Markus (1)
Biesmeijer, Jacobus ... (1)
Jung, Martin (1)
Andresen, Louise C. (1)
Kasimir, Åsa (1)
Nilsson, Sven G (1)
Wang-Erlandsson, Lan (1)
Sutherland, William ... (1)
Boonstra, Wiebren J. (1)
Klatt, Björn (1)
Smith, Henrik (1)
Vajda, Vivi (1)
Pascual, Unai (1)
Albrecht, Matthias (1)
Kleijn, David (1)
Entling, Martin H. (1)
Goulson, Dave (1)
Grab, Heather (1)
Knop, Eva (1)
Morandin, Lora (1)
Sciligo, Amber (1)
show less...
University
Lund University (5)
Swedish University of Agricultural Sciences (5)
Stockholm University (2)
Royal Institute of Technology (1)
Mid Sweden University (1)
Chalmers University of Technology (1)
show more...
Linnaeus University (1)
show less...
Language
English (5)
Research subject (UKÄ/SCB)
Natural sciences (5)
Engineering and Technology (1)
Agricultural Sciences (1)
Social Sciences (1)

Year

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Close

Copy and save the link in order to return to this view