SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Horányi M.) srt2:(2010-2014)"

Sökning: WFRF:(Horányi M.) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gruen, E., et al. (författare)
  • Ulysses Dust Detection System V3.1
  • 2010
  • Ingår i: NASA Planetary Data System. ; 140
  • Tidskriftsartikel (refereegranskat)abstract
    • This data set contains the data from the Ulysses dust detector system (UDDS) from start of mission through the end of mission, 1990-2007. (As the dust detector was turned off after Nov. 30, 2007, this is the last date for which UDDS data is recorded.) Included are the dust impact data, noise data, laboratory calibration data, and location and orientation of the spacecraft and instrument.
  •  
2.
  • Krueger, H., et al. (författare)
  • Galileo Dust Detection System V4.1
  • 2010
  • Ingår i: NASA Planetary Data System. ; 139
  • Tidskriftsartikel (refereegranskat)abstract
    • This data set contains the data from the Galileo dust detector system (GDDS) from start of mission through the end of mission. Included are the dust impact data, noise data, laboratory calibration data, and location and orientation of the spacecraft and instrument.
  •  
3.
  • Hedin, Jonas, et al. (författare)
  • The MAGIC meteoric smoke particle sampler
  • 2014
  • Ingår i: Journal of Atmospheric and Solar-Terrestrial Physics. - : Elsevier BV. - 1364-6826 .- 1879-1824. ; 118, s. 127-144
  • Tidskriftsartikel (refereegranskat)abstract
    • Between a few tons to several hundred tons of meteoric material enters the Earth's atmosphere each day, and most of this material is ablated and vaporized in the 70-120 km altitude region. The subsequent chemical conversion, re-condensation and coagulation of this evaporated material are thought to form nanometre sized meteoric smoke particles (MSPs). These smoke particles are then subject to further coagulation, sedimentation and global transport by the mesospheric circulation. MSPs have been proposed as a key player in the formation and evolution of ice particle layers around the mesopause region, i.e. noctilucent clouds (NLC) and polar mesosphere summer echoes (PMSE). MSPs have also been implicated in mesospheric heterogeneous chemistry to influence the mesospheric odd oxygen/odd hydrogen (O-x/HOx) chemistry, to play an important role in the mesospheric charge balance, and to be a significant component of stratospheric aerosol and enhance the depletion of O-3. Despite their apparent importance, little is known about the properties of MSPs and none of the hypotheses can be verified without direct evidence of the existence, altitude and size distribution, shape and elemental composition. The aim of the MAGIC project (Mesospheric Aerosol - Genesis, Interaction and Composition) was to develop an instrument and analysis techniques to sample for the first time MSPs in the mesosphere and return them to the ground for detailed analysis in the laboratory. MAGIC meteoric smoke particle samplers have been flown on several sounding rocket payloads between 2005 and 2011. Several of these flights concerned non-summer mesosphere conditions when pure MSP populations can be expected. Other flights concerned high latitude summer conditions when MSPs are expected to be contained in ice particles in the upper mesosphere. In this paper we present the MAGIC project and describe the MAGIC MSP sampler, the measurement procedure and laboratory analysis. We also present the attempts to retrieve MSPs from these flights, the challenges inherent to the sampling of nanometre sized particles and the subsequent analysis of the sampled material, and thoughts for the future. Despite substantial experimental efforts, the MAGIC project has so far failed to provide conclusive results. While particles with elemental composition similar to what is to be expected from MSPs have been found, the analysis has been compromised by challenges with different types of contamination and uncertainties in the sticking efficiency of the particles on the sampling surfaces.
  •  
4.
  • Hill, T. W., et al. (författare)
  • Charged nanograins in the Enceladus plume
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. A05209-
  • Tidskriftsartikel (refereegranskat)abstract
    • There have been three Cassini encounters with the south-pole eruptive plume of Enceladus for which the Cassini Plasma Spectrometer (CAPS) had viewing in the spacecraft ram direction. In each case, CAPS detected a cold dense population of heavy charged particles having mass-to-charge (m/q) ratios up to the maximum detectable by CAPS (similar to 10(4) amu/e). These particles are interpreted as singly charged nanometer-sized water-ice grains. Although they are detected with both negative and positive net charges, the former greatly outnumber the latter, at least in the m/q range accessible to CAPS. On the most distant available encounter (E3, March 2008) we derive a net (negative) charge density of up to similar to 2600 e/cm(3) for nanograins, far exceeding the ambient plasma number density, but less than the net (positive) charge density inferred from the RPWS Langmuir probe data during the same plume encounter. Comparison of the CAPS data from the three available encounters is consistent with the idea that the nanograins leave the surface vents largely uncharged, but become increasingly negatively charged by plasma electron impact as they move farther from the satellite. These nanograins provide a potentially potent source of magnetospheric plasma and E-ring material.
  •  
5.
  • Deca, J., et al. (författare)
  • Electromagnetic Particle-in-Cell Simulations of the Solar Wind Interaction with Lunar Magnetic Anomalies
  • 2014
  • Ingår i: Physical Review Letters. - 0031-9007 .- 1079-7114. ; 112:15, s. 151102-
  • Tidskriftsartikel (refereegranskat)abstract
    • We present the first three-dimensional fully kinetic and electromagnetic simulations of the solar wind interaction with lunar crustal magnetic anomalies (LMAs). Using the implicit particle-in-cell code IPIC3D, we confirm that LMAs may indeed be strong enough to stand off the solar wind from directly impacting the lunar surface forming a mini-magnetosphere, as suggested by spacecraft observations and theory. In contrast to earlier magnetohydrodynamics and hybrid simulations, the fully kinetic nature of IPIC3D allows us to investigate the space charge effects and in particular the electron dynamics dominating the near-surface lunar plasma environment. We describe for the first time the interaction of a dipole model centered just below the lunar surface under plasma conditions such that only the electron population is magnetized. The fully kinetic treatment identifies electromagnetic modes that alter the magnetic field at scales determined by the electron physics. Driven by strong pressure anisotropies, the mini-magnetosphere is unstable over time, leading to only temporal shielding of the surface underneath. Future human exploration as well as lunar science in general therefore hinges on a better understanding of LMAs.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy