SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huang Yanyan) srt2:(2020-2024)"

Sökning: WFRF:(Huang Yanyan) > (2020-2024)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Kristan, Matej, et al. (författare)
  • The Ninth Visual Object Tracking VOT2021 Challenge Results
  • 2021
  • Ingår i: 2021 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCVW 2021). - : IEEE COMPUTER SOC. - 9781665401913 ; , s. 2711-2738
  • Konferensbidrag (refereegranskat)abstract
    • The Visual Object Tracking challenge VOT2021 is the ninth annual tracker benchmarking activity organized by the VOT initiative. Results of 71 trackers are presented; many are state-of-the-art trackers published at major computer vision conferences or in journals in recent years. The VOT2021 challenge was composed of four sub-challenges focusing on different tracking domains: (i) VOT-ST2021 challenge focused on short-term tracking in RGB, (ii) VOT-RT2021 challenge focused on "real-time" short-term tracking in RGB, (iii) VOT-LT2021 focused on long-term tracking, namely coping with target disappearance and reappearance and (iv) VOT-RGBD2021 challenge focused on long-term tracking in RGB and depth imagery. The VOT-ST2021 dataset was refreshed, while VOT-RGBD2021 introduces a training dataset and sequestered dataset for winner identification. The source code for most of the trackers, the datasets, the evaluation kit and the results along with the source code for most trackers are publicly available at the challenge website(1).
  •  
3.
  • Li, Feiran, 1993, et al. (författare)
  • Improving recombinant protein production by yeast through genome-scale modeling using proteome constraints
  • 2022
  • Ingår i: Nature Communications. - : Springer Science and Business Media LLC. - 2041-1723 .- 2041-1723. ; 13:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Eukaryotic cells are used as cell factories to produce and secrete multitudes of recombinant pharmaceutical proteins, including several of the current top-selling drugs. Due to the essential role and complexity of the secretory pathway, improvement for recombinant protein production through metabolic engineering has traditionally been relatively ad-hoc; and a more systematic approach is required to generate novel design principles. Here, we present the proteome-constrained genome-scale protein secretory model of yeast Saccharomyces cerevisiae (pcSecYeast), which enables us to simulate and explain phenotypes caused by limited secretory capacity. We further apply the pcSecYeast model to predict overexpression targets for the production of several recombinant proteins. We experimentally validate many of the predicted targets for alpha-amylase production to demonstrate pcSecYeast application as a computational tool in guiding yeast engineering and improving recombinant protein production. Due to the complexity of the protein secretory pathway, strategy suitable for the production of a certain recombination protein cannot be generalized. Here, the authors construct a proteome-constrained genome-scale protein secretory model for yeast and show its application in the production of different misfolded or recombinant proteins.
  •  
4.
  • Zhu, Zhenyu, et al. (författare)
  • Coupling life prediction of bending very high cycle fatigue of completion strings made of different materials using deep wise separable convolution
  • 2024
  • Ingår i: Fatigue & Fracture of Engineering Materials & Structures. - : WILEY. - 8756-758X .- 1460-2695.
  • Tidskriftsartikel (refereegranskat)abstract
    • This article predicts bending very high cycle fatigue (VHCF) life of three typical nickel-based alloys SM2550, BG2532, and G3 used for completion strings. Fatigue tests were conducted on the three alloys using an ultrasonic fatigue system at a frequency of 20 kHz. The results showed that the fatigue strength ranges of the three alloys were markedly different, reflecting their different sensitivities to fatigue loading. Scanning electron microscope observations revealed numerous fatigue crack origins with internal decohesion in the fatigue source region. To achieve unified prediction of the fatigue life for the three alloys, a prediction model based on deep learning was built with inputs including fatigue initiation quantity, cleavage facet size, and other fatigue fracture characteristics. It was found that single source feature was insufficient to obtain satisfactory prediction accuracy for all alloys, while multifeature coupling integration could significantly improve the prediction precision, enabling reliable prediction of alloy fatigue life. This study provides new insights into bending VHCF life prediction. This article predicts bending VHCF life for three completion strings. Bending VHCF life model utilizing deep wise separable convolution was established. Deep learning can effectively integrate with bending VHCF analyses.
  •  
5.
  • Zhu, Zhenyu, et al. (författare)
  • Origin of prestrain-induced cyclic-strain hardening: Multi-scale experimental characterizations and simulations of 7075 aluminum alloy
  • 2024
  • Ingår i: Materials & design. - : ELSEVIER SCI LTD. - 0264-1275 .- 1873-4197. ; 238
  • Tidskriftsartikel (refereegranskat)abstract
    • The influence of prefabricated dislocation features induced by rate dependent prestrain on the post-cyclic process in 7075 aluminum alloy exhibits significant variations, which are of great importance in terms of concerns, designs, and discoveries. Considering strain rate dependent prestrain provides diversified hardening stimuli for the subsequent cyclic process. The maximum cyclic stress in the post-cyclic stage was maintained at the same level as the prestress with strain rates ranging from 10-4s-1 to 10-1s-1. Subsequently, by adjusting post-cycling stress amplitude, research was conducted on quasi-plastic amplitude cycle (QPC) and low plasticity amplitude cycle (LPC) loading conditions. Through experimental mechanism analysis, as well as verification through molecular dynamics and crystal plasticity simulations, prestrain induced by rapid strain rates enhanced the hardening during QPC, stemming from the effects of matrix reconstruction strengthening and wavy structured grain boundaries. However, prestrain induced by slow strain rates promoted the hardening during LPC, primarily arising from the non-uniform crystal structures within individual grains, which was achieved through the complex sub-crystal clusters at grain boundaries, along with intracrystal orderly slipping lattice. These findings offer new insights for the optimization of microstructural design through dislocation engineering.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy