SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hubley Robert) srt2:(2020-2023)"

Sökning: WFRF:(Hubley Robert) > (2020-2023)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Christmas, Matthew, et al. (författare)
  • Evolutionary constraint and innovation across hundreds of placental mammals
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643
  • Tidskriftsartikel (refereegranskat)abstract
    • Zoonomia is the largest comparative genomics resource for mammals produced to date. By aligning genomes for 240 species, we identify bases that, when mutated, are likely to affect fitness and alter disease risk. At least 332 million bases (similar to 10.7%) in the human genome are unusually conserved across species (evolutionarily constrained) relative to neutrally evolving repeats, and 4552 ultraconserved elements are nearly perfectly conserved. Of 101 million significantly constrained single bases, 80% are outside protein-coding exons and half have no functional annotations in the Encyclopedia of DNA Elements (ENCODE) resource. Changes in genes and regulatory elements are associated with exceptional mammalian traits, such as hibernation, that could inform therapeutic development. Earth's vast and imperiled biodiversity offers distinctive power for identifying genetic variants that affect genome function and organismal phenotypes.
  •  
2.
  • Elliott, Tyler A., et al. (författare)
  • TE Hub : A community-oriented space for sharing and connecting tools, data, resources, and methods for transposable element annotation
  • 2021
  • Ingår i: Mobile DNA. - : Springer Science and Business Media LLC. - 1759-8753. ; 12:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Transposable elements (TEs) play powerful and varied evolutionary and functional roles, and are widespread in most eukaryotic genomes. Research into their unique biology has driven the creation of a large collection of databases, software, classification systems, and annotation guidelines. The diversity of available TE-related methods and resources raises compatibility concerns and can be overwhelming to researchers and communicators seeking straightforward guidance or materials. To address these challenges, we have initiated a new resource, TE Hub, that provides a space where members of the TE community can collaborate to document and create resources and methods. The space consists of (1) a website organized with an open wiki framework, httpsi/tehub.org , (2) a conversation framework via a Twitter account and a Slack channel, and (3) bi-monthly Hub Update video chats on the platform's development. In addition to serving as a centralized repository and communication platform, TE Hub lays the foundation for improved integration, standardization, and effectiveness of diverse tools and protocols. We invite the TE community, both novices and experts in TE identification and analysis, to join us in expanding our community-oriented resource.
  •  
3.
  • Genereux, Diane P., et al. (författare)
  • A comparative genomics multitool for scientific discovery and conservation
  • 2020
  • Ingår i: Nature. - : NATURE RESEARCH. - 0028-0836 .- 1476-4687. ; 587:7833, s. 240-245
  • Tidskriftsartikel (refereegranskat)abstract
    • A whole-genome alignment of 240 phylogenetically diverse species of eutherian mammal-including 131 previously uncharacterized species-from the Zoonomia Project provides data that support biological discovery, medical research and conservation. The Zoonomia Project is investigating the genomics of shared and specialized traits in eutherian mammals. Here we provide genome assemblies for 131 species, of which all but 9 are previously uncharacterized, and describe a whole-genome alignment of 240 species of considerable phylogenetic diversity, comprising representatives from more than 80% of mammalian families. We find that regions of reduced genetic diversity are more abundant in species at a high risk of extinction, discern signals of evolutionary selection at high resolution and provide insights from individual reference genomes. By prioritizing phylogenetic diversity and making data available quickly and without restriction, the Zoonomia Project aims to support biological discovery, medical research and the conservation of biodiversity.
  •  
4.
  • Osmanski, Austin B., et al. (författare)
  • Insights into mammalian TE diversity through the curation of 248 genome assemblies
  • 2023
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 380:6643, s. 371-
  • Tidskriftsartikel (refereegranskat)abstract
    • We examined transposable element (TE) content of 248 placental mammal genome assemblies, the largest de novo TE curation effort in eukaryotes to date. We found that although mammals resemble one another in total TE content and diversity, they show substantial differences with regard to recent TE accumulation. This includes multiple recent expansion and quiescence events across the mammalian tree. Young TEs, particularly long interspersed elements, drive increases in genome size, whereas DNA transposons are associated with smaller genomes. Mammals tend to accumulate only a few types of TEs at any given time, with one TE type dominating. We also found association between dietary habit and the presence of DNA transposon invasions. These detailed annotations will serve as a benchmark for future comparative TE analyses among placental mammals.
  •  
5.
  • Paulat, Nicole S., et al. (författare)
  • Chiropterans Are a Hotspot for Horizontal Transfer of DNA Transposons in Mammalia
  • 2023
  • Ingår i: Molecular biology and evolution. - : Oxford University Press. - 0737-4038 .- 1537-1719. ; 40:5
  • Tidskriftsartikel (refereegranskat)abstract
    • Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy