SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hudson ) srt2:(2020-2024)"

Sökning: WFRF:(Hudson ) > (2020-2024)

  • Resultat 1-10 av 168
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • 2021
  • swepub:Mat__t
  •  
2.
  •  
3.
  •  
4.
  • Andersson, Jennie, 1986, et al. (författare)
  • Ship-scale CFD benchmark study of a pre-swirl duct on KVLCC2
  • 2022
  • Ingår i: Applied Ocean Research. - : Elsevier Ltd. - 0141-1187 .- 1879-1549. ; 123
  • Tidskriftsartikel (refereegranskat)abstract
    • Installing an energy saving device such as a pre-swirl duct (PSD) is a major investment for a ship owner and prior to an order a reliable prediction of the energy savings is required. Currently there is no standard for how such a prediction is to be carried out, possible alternatives are both model-scale tests in towing tanks with associated scaling procedures, as well as methods based on computational fluid dynamics (CFD). This paper summarizes a CFD benchmark study comparing industrial state-of-the-art ship-scale CFD predictions of the power reduction through installation of a PSD, where the objective was to both obtain an indication on the reliability in this kind of prediction and to gain insight into how the computational procedure affects the results. It is a blind study, the KVLCC2, which the PSD is mounted on, has never been built and hence there is no ship-scale data available. The 10 participants conducted in total 22 different predictions of the power reduction with respect to a baseline case without PSD. The predicted power reductions are both positive and negative, on average 0.4%, with a standard deviation of 1.6%-units, when not considering two predictions based on model-scale CFD and two outliers associated with large uncertainties in the results. Among the variations present in computational procedure, two were found to significantly influence the predictions. First, a geometrically resolved propeller model applying sliding mesh interfaces is in average predicting a higher power reduction with the PSD compared to simplified propeller models. The second factor with notable influence on the power reduction prediction is the wake field prediction, which, besides numerical configuration, is affected by how hull roughness is considered. © 2022 The Authors
  •  
5.
  • Andrés-Jensen, Liv, et al. (författare)
  • Severe toxicity free survival : physician-derived definitions of unacceptable long-term toxicities following acute lymphocytic leukaemia
  • 2021
  • Ingår i: The Lancet Haematology. - : Elsevier. - 2352-3026. ; 8:7, s. E513-E523
  • Forskningsöversikt (refereegranskat)abstract
    • 5-year overall survival rates have surpassed 90% for childhood acute lymphocytic leukaemia, but survivors are at risk for permanent health sequelae. Although event-free survival appropriately represents the outcome for cancers with poor overall survival, this metric is inadequate when cure rates are high but challenged by serious, persistent complications. Accordingly, a group of experts in paediatric haematology-oncology, representative of 17 international acute lymphocytic leukaemia study groups, launched an initiative to construct a measure, designated severe toxicity-free survival (STFS), to quantify the occurrence of physician-prioritised toxicities to be integrated with standard cancer outcome reporting. Five generic inclusion criteria (not present before cancer diagnosis, symptomatic, objectifiable, of unacceptable severity, permanent, or requiring unacceptable treatments) were used to assess 855 health conditions, which resulted in inclusion of 21 severe toxicities. Consensus definitions were reached through a modified Delphi process supplemented by two additional plenary meetings. The 21 severe toxicities include severe adverse health conditions that substantially affect activities of daily living and are refractory to therapy (eg, refractory seizures), are without therapeutic options (eg, blindness), or require substantially invasive treatment (eg, cardiac transplantation). Incorporation of STFS assessment into clinical trials has the potential to improve and diversify treatment strategies, focusing not only on traditional outcome events and overall survival but also the frequencies of the most severe toxicities. The two major aims of this Review were to: prioritise and define unacceptable long-term toxicity for patients with childhood acute lymphocytic leukaemia, and define how these toxicities should be combined into a composite quantity to be integrated with other reported outcomes. Although STFS quantifies the clinically unacceptable health tradeoff for cure using childhood acute lymphocytic leukaemia as a model disease, the prioritised severe toxicities are based on generic considerations of relevance to any other cancer diagnosis and age group.
  •  
6.
  • Archambault, Alexi N., et al. (författare)
  • Cumulative Burden of Colorectal Cancer Associated Genetic Variants Is More Strongly Associated With Early-Onset vs Late-Onset Cancer
  • 2020
  • Ingår i: Gastroenterology. - : Elsevier BV. - 0016-5085 .- 1528-0012. ; 158:5, s. 1274-1286.e12
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND & AIMS: Early-onset colorectal cancer (CRC, in persons younger than 50 years old) is increasing in incidence; yet, in the absence of a family history of CRC, this population lacks harmonized recommendations for prevention. We aimed to determine whether a polygenic risk score (PRS) developed from 95 CRC-associated common genetic risk variants was associated with risk for early-onset CRC.METHODS: We studied risk for CRC associated with a weighted PRS in 12,197 participants younger than 50 years old vs 95,865 participants 50 years or older. PRS was calculated based on single nucleotide polymorphisms associated with CRC in a large-scale genome-wide association study as of January 2019. Participants were pooled from 3 large consortia that provided clinical and genotyping data: the Colon Cancer Family Registry, the Colorectal Transdisciplinary Study, and the Genetics and Epidemiology of Colorectal Cancer Consortium and were all of genetically defined European descent. Findings were replicated in an independent cohort of 72,573 participants.RESULTS: Overall associations with CRC per standard deviation of PRS were significant for early-onset cancer, and were stronger compared with late-onset cancer (P for interaction = .01); when we compared the highest PRS quartile with the lowest, risk increased 3.7-fold for early-onset CRC (95% CI 3.28-4.24) vs 2.9-fold for late-onset CRC (95% CI 2.80-3.04). This association was strongest for participants without a first-degree family history of CRC (P for interaction = 5.61 x 10(-5)). When we compared the highest with the lowest quartiles in this group, risk increased 4.3-fold for early-onset CRC (95% CI 3.61-5.01) vs 2.9-fold for late-onset CRC (95% CI 2.70-3.00). Sensitivity analyses were consistent with these findings.CONCLUSIONS: In an analysis of associations with CRC per standard deviation of PRS, we found the cumulative burden of CRC-associated common genetic variants to associate with early-onset cancer, and to be more strongly associated with early-onset than late-onset cancer, particularly in the absence of CRC family history. Analyses of PRS, along with environmental and lifestyle risk factors, might identify younger individuals who would benefit from preventive measures.
  •  
7.
  • Armanious, Antonius, 1981, et al. (författare)
  • Probing the Separation Distance between Biological Nanoparticles and Cell Membrane Mimics Using Neutron Reflectometry with Sub-Nanometer Accuracy
  • 2022
  • Ingår i: Journal of the American Chemical Society. - : American Chemical Society (ACS). - 1520-5126 .- 0002-7863. ; 144:45, s. 20726-20738
  • Tidskriftsartikel (refereegranskat)abstract
    • Nanoparticle interactions with cellular membranes are controlled by molecular recognition reactions and regulate a multitude of biological processes, including virus infections, biological nanoparticle-mediated cellular communication, and drug delivery applications. Aided by the design of various supported cell membrane mimics, multiple methods have been employed to investigate these types of interactions, revealing information on nanoparticle coverage, interaction kinetics, as well as binding strength; however, precise quantification of the separation distance across which these delicate interactions occur remains elusive. Here, we demonstrate that carefully designed neutron reflectometry (NR) experiments followed by an attentive selection and application of suitable theoretical models offer a means to quantify the distance separating biological nanoparticles from a supported lipid bilayer (SLB) with sub-nanometer precision. The distance between the nanoparticles and SLBs was tuned by exploiting either direct adsorption or specific binding using DNA tethers with different conformations, revealing separation distances of around 1, 3, and 7 nm with nanometric accuracy. We also show that NR provides precise information on nanoparticle coverage, size distribution, material composition, and potential structural changes in the underlying planar SLB induced upon nanoparticle binding. The precision with which these parameters could be quantified should pave an attractive path for investigations of the interactions between nanoparticles and interfaces at length scales and resolutions that were previously inaccessible. This thus makes it possible to, for example, gain an in-depth understanding of the molecular recognition reactions of inorganic and biological nanoparticles with cellular membranes.
  •  
8.
  • Asplund Samuelsson, Johannes, 1987- (författare)
  • Adaptations and constraints associated with autotrophy in microbial metabolism
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon dioxide (CO2) emissions from human activities are driving climate change, but the pending crisis could be mitigated by a circular carbon economy where released CO2 is recycled into commodity chemicals. Autotrophic microbes can make a contribution by producing chemicals, such as biofuels, from CO2 and renewable energy. The primary natural CO2 fixation pathway is the Calvin cycle, in which the enzyme Rubisco carboxylates ribulose-1,5-bisphosphate. The present investigation used computational systems biology methods to map adaptations and constraints in autotrophic microbial metabolism based on the Calvin cycle. First, the metabolic network of the Calvin cycle-capable photoautotrophic cyanobacterium Synechocystis was contrasted with that of heterotrophic E. coli. Intracellular metabolite concentration ranges differed, leading to different capacity to provide thermodynamic driving forces to chemical production pathways. Second, the Calvin cycle in Synechocystis was modeled kinetically, showing that certain enzyme saturation and metabolite levels, for example high ribulose-1,5-bisphosphate concentration, were detrimental to stability. Control over reaction rates was distributed, but making certain enzymes faster, for example fructose-1,6-bisphosphatase, could increase overall carbon fixation rate. Third, Synechocystis was starved of CO2 and ribosome profiling was used to track the effect on translation. Stress response and CO2 uptake were upregulated, but constant Rubisco expression and ribosome pausing in 5' untranslated regions indicated readiness for reappearance of CO2. Finally, microbial genomes with and without the Calvin cycle were contrasted, revealing metabolic, energetic, and regulatory adaptations that describe the properties of a functional autotroph. These findings provide a background for future study and engineering of autotrophs for direct conversion of CO2 into commodity chemicals.
  •  
9.
  • Asplund-Samuelsson, Johannes, et al. (författare)
  • Wide range of metabolic adaptations to the acquisition of the Calvin cycle revealed by comparison of microbial genomes
  • 2021
  • Ingår i: PloS Computational Biology. - : Public Library of Science (PLoS). - 1553-734X .- 1553-7358. ; 17:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Knowledge of the genetic basis for autotrophic metabolism is valuable since it relates to both the emergence of life and to the metabolic engineering challenge of incorporating CO2 as a potential substrate for biorefining. The most common CO2 fixation pathway is the Calvin cycle, which utilizes Rubisco and phosphoribulokinase enzymes. We searched thousands of microbial genomes and found that 6.0% contained the Calvin cycle. We then contrasted the genomes of Calvin cycle-positive, non-cyanobacterial microbes and their closest relatives by enrichment analysis, ancestral character estimation, and random forest machine learning, to explore genetic adaptations associated with acquisition of the Calvin cycle. The Calvin cycle overlaps with the pentose phosphate pathway and glycolysis, and we could confirm positive associations with fructose-1,6-bisphosphatase, aldolase, and transketolase, constituting a conserved operon, as well as ribulose-phosphate 3-epimerase, ribose-5-phosphate isomerase, and phosphoglycerate kinase. Additionally, carbohydrate storage enzymes, carboxysome proteins (that raise CO2 concentration around Rubisco), and Rubisco activases CbbQ and CbbX accompanied the Calvin cycle. Photorespiration did not appear to be adapted specifically for the Calvin cycle in the non-cyanobacterial microbes under study. Our results suggest that chemoautotrophy in Calvin cycle-positive organisms was commonly enabled by hydrogenase, and less commonly ammonia monooxygenase (nitrification). The enrichment of specific DNA-binding domains indicated Calvin-cycle associated genetic regulation. Metabolic regulatory adaptations were illustrated by negative correlation to AraC and the enzyme arabinose-5-phosphate isomerase, which suggests a downregulation of the metabolite arabinose-5-phosphate, which may interfere with the Calvin cycle through enzyme inhibition and substrate competition. Certain domains of unknown function that were found to be important in the analysis may indicate yet unknown regulatory mechanisms in Calvin cycle-utilizing microbes. Our gene ranking provides targets for experiments seeking to improve CO2 fixation, or engineer novel CO2-fixing organisms.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 168
Typ av publikation
tidskriftsartikel (113)
bokkapitel (18)
forskningsöversikt (10)
konferensbidrag (7)
doktorsavhandling (7)
samlingsverk (redaktörskap) (3)
visa fler...
rapport (1)
bok (1)
annan publikation (1)
visa färre...
Typ av innehåll
refereegranskat (134)
övrigt vetenskapligt/konstnärligt (27)
Författare/redaktör
Hudson, Brian (10)
Jain, A (9)
Davies, E. (8)
Martin, J. (8)
Brown, A. (8)
Ali, S (8)
visa fler...
Sharma, A (8)
Smith, L (8)
Smith, J. (8)
Patel, A (8)
Shaw, R (8)
Werner, J (8)
Patel, K (8)
Patel, M (8)
Price, C (8)
Newman, T (8)
Parmar, C (8)
Williams, A (8)
Gsur, Andrea (8)
Jones, M. (7)
Williams, G. (7)
Jones, R. (7)
Roberts, M. (7)
Khan, A. (7)
Thomas, E. (7)
Chang-Claude, Jenny (7)
Evans, J. (7)
Abdalla, M. (7)
Murphy, S. (7)
Alameer, E (7)
Smith, H (7)
Murphy, C (7)
Colombo, F (7)
Gori, A (7)
Smith, C (7)
Findlay, L (7)
Thomas, A (7)
Williams, K (7)
Turnbull, A (7)
Hanson, A (7)
Kent, A (7)
Berndt, Sonja I (7)
Brenner, Hermann (7)
Walker, D. (7)
Dunning, J (7)
Buchanan, Daniel D. (7)
Harrison, Tabitha A. (7)
Hoffmeister, Michael (7)
Moreno, Victor (7)
Newcomb, Polly A. (7)
visa färre...
Lärosäte
Karolinska Institutet (46)
Kungliga Tekniska Högskolan (32)
Umeå universitet (29)
Lunds universitet (24)
Uppsala universitet (19)
Göteborgs universitet (15)
visa fler...
Karlstads universitet (12)
Chalmers tekniska högskola (10)
Stockholms universitet (4)
Marie Cederschiöld högskola (4)
Luleå tekniska universitet (3)
Linköpings universitet (3)
Nordiska Afrikainstitutet (2)
Örebro universitet (2)
Sveriges Lantbruksuniversitet (2)
Malmö universitet (1)
Mittuniversitetet (1)
Linnéuniversitetet (1)
RISE (1)
Sophiahemmet Högskola (1)
visa färre...
Språk
Engelska (166)
Svenska (2)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (57)
Medicin och hälsovetenskap (46)
Samhällsvetenskap (30)
Teknik (14)
Humaniora (5)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy