SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hugelius Gustaf) srt2:(2010-2014)"

Sökning: WFRF:(Hugelius Gustaf) > (2010-2014)

  • Resultat 1-10 av 20
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Harden, Jennifer W., et al. (författare)
  • Field information links permafrost carbon to physical vulnerabilities of thawing
  • 2012
  • Ingår i: Geophysical Research Letters. - 0094-8276 .- 1944-8007. ; 39, s. L15704-
  • Tidskriftsartikel (refereegranskat)abstract
    • Deep soil profiles containing permafrost (Gelisols) were characterized for organic carbon (C) and total nitrogen (N) stocks to 3 m depths. Using the Community Climate System Model (CCSM4) we calculate cumulative distributions of active layer thickness (ALT) under current and future climates. The difference in cumulative ALT distributions over time was multiplied by C and N contents of soil horizons in Gelisol suborders to calculate newly thawed C and N. Thawing ranged from 147 PgC with 10 PgN by 2050 (representative concentration pathway RCP scenario 4.5) to 436 PgC with 29 PgN by 2100 (RCP 8.5). Organic horizons that thaw are vulnerable to combustion, and all horizon types are vulnerable to shifts in hydrology and decomposition. The rates and extent of such losses are unknown and can be further constrained by linking field and modelling approaches. These changes have the potential for strong additional loading to our atmosphere, water resources, and ecosystems. Citation: Harden, J. W., et al. (2012), Field information links permafrost carbon to physical vulnerabilities of thawing, Geophys. Res. Lett., 39, L15704, doi: 10.1029/2012GL051958.
  •  
2.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • Characterization of Soil Organic Matter in Permafrost Terrain – landscape scale analyses from the European Russian Arctic
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    •  1 INTRODUCTIONSoils of high latitude terrestrial ecosystems are considered key components in the global carbon cycle and hold large stores of Soil Organic Carbon (SOC). The absolute and relative sizes of labile and recalcitrant SOC pools in periglacial terrain are mostly unknown (Kuhry et al. in prep.). Such data has important policy relevance because of its impact on climate change.We sampled soils representative of all major land cover and soil types in discontinuous permafrost terrain, European Russian Arctic. We analyzed the bulk soil characteristics including the soil humic fraction to assess the recalcitrance in organic matter quality in down-depth soil profiles.2 METHODSA comprehensive stratified random soil sampling program was carried out in the Seida area during late summer 2008. From these, we selected nine sites considered representative for the landscape. Active layer and permafrost free upland soils were sampled from dug soil pits with fixed volume corers. Peat plateaus were sampled near thermally eroding edges. Permafrost soils were cored using steel pipes hammered into the frozen peat. Permafrost free fens were sampled using fixed volume Russian corers.Radiocarbon dating was used to determine the SOC ages. The soils were analyzed for dry bulk density, elemental content, and stable isotope composition of organic C and N (δ13C, and δ15N). Further, humic acids were extracted, and the degree of humification of SOM assessed based on A600/C and ∆ log K (Ikeya and Watanabe, 2003).3 RESULTSFigure 1 shows soil organic matter (SOM) characteristics in a peat sequence from one of the nine described sites, a raised bog peat plateau.The peatland first developed as a permafrost-free fen during the Holocene Hypsithermal. Permafrost only aggraded in the late Holocene. Anoxic conditions in the fen and permafrost in peat plateau stages reduced decomposition rates and the degree of humification (A600/C) is relatively constant throughout the peat deposit.Botanical origin is a key factor in determining SOM quality, which is clearly reflected in the elemental ratio (C/N) and isotopic composition of C and N. There are sharp shifts in humification, C/N and isotopic composition at the peat/clay interface.REFERENCESIkeya, K. and Watanabe, A., 2003, Direct expression of an index for the degree of humification of humic acids using organic carbon concentration. Soil Science and Plant Nutrition, 49: 47-53.Kuhry, P., Dorrepaal, E., Hugelius G., Schuur, E.A.G. and Tarnocai C., Potential remobilization of permafrost carbon under future global warming. Permafrost and Periglacial Processes, Submitted.
  •  
3.
  • Hugelius, Gustaf, et al. (författare)
  • Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
  • 2014
  • Ingår i: Biogeosciences. - : Copernicus GmbH. - 1726-4170 .- 1726-4189. ; 11:23, s. 6573-6593
  • Tidskriftsartikel (refereegranskat)abstract
    • Soils and other unconsolidated deposits in the northern circumpolar permafrost region store large amounts of soil organic carbon (SOC). This SOC is potentially vulnerable to remobilization following soil warming and permafrost thaw, but SOC stock estimates were poorly constrained and quantitative error estimates were lacking. This study presents revised estimates of permafrost SOC stocks, including quantitative uncertainty estimates, in the 0-3m depth range in soils as well as for sediments deeper than 3m in deltaic deposits of major rivers and in the Yedoma region of Siberia and Alaska. Revised estimates are based on significantly larger databases compared to previous studies. Despite this there is evidence of significant remaining regional data gaps. Estimates remain particularly poorly constrained for soils in the High Arctic region and physiographic regions with thin sedimentary overburden (mountains, highlands and plateaus) as well as for deposits below 3mdepth in deltas and the Yedoma region. While some components of the revised SOC stocks are similar in magnitude to those previously reported for this region, there are substantial differences in other components, including the fraction of perennially frozen SOC. Upscaled based on regional soil maps, estimated permafrost region SOC stocks are 217 +/- 12 and 472 +/- 27 Pg for the 0-0.3 and 0-1 m soil depths, respectively (+/- 95% confidence intervals). Storage of SOC in 0-3m of soils is estimated to 1035 +/- 150 Pg. Of this, 34 +/- 16 PgC is stored in poorly developed soils of the High Arctic. Based on generalized calculations, storage of SOC below 3m of surface soils in deltaic alluvium of major Arctic rivers is estimated as 91 +/- 52 Pg. In the Yedoma region, estimated SOC stocks below 3mdepth are 181 +/- 54 Pg, of which 74 +/- 20 Pg is stored in intact Yedoma (late Pleistocene ice-and organic-rich silty sediments) with the remainder in refrozen thermokarst deposits. Total estimated SOC storage for the permafrost region is similar to 1300 Pg with an uncertainty range of similar to 1100 to 1500 Pg. Of this, similar to 500 Pg is in non-permafrost soils, seasonally thawed in the active layer or in deeper taliks, while similar to 800 Pg is perennially frozen. This represents a substantial similar to 300 Pg lowering of the estimated perennially frozen SOC stock compared to previous estimates.
  •  
4.
  • Hugelius, Gustaf, 1980-, et al. (författare)
  • Estimating soil organic carbon storage in periglacial terrain at very high resolution; a case study from the European Russian Arctic
  • 2010
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    •   1    Introduction   While recent research advances have significantly increased our understanding of SOC storage in the periglacial landscape, there are still many uncertainties. Local scale studies have shown that the landscape distribution of SOC is highly heterogeneous (e.g. Hugelius and Kuhry, 2009). Some landscape components, such as peat deposits or cryoturbated soil horizons, can dominate local SOC storage.  However, there are no clear trends in landscape distribution and regional differences emerge (Kuhry et al., in prep.). We have conducted a very high resolution study of SOC storage in four study sites (Seida and Rogovaya 1-3) in discontinuous permafrost terrain, European Russian Arctic. Point pedon data is upscaled to areal coverage using two different upscaling tools, land cover classifications and soil maps. 2      Methods 2.1     Soil sampling and upscaling Soil sampling was performed (i) along landscape transects and (ii) according to a weighted, stratified random sampling program. Sampling was done in 10 cm increments to 1 m depth or to full depth of peat deposits in a total of 94 sites. Point pedon data is upscaled to areal coverage using two different upscaling tools: 1. Thematic land cover classifications based on multiresolution segmentation of high-resolution Quickbird imagery (2.44 m raster resolution, 17 separate land cover classes, software Definiens Professional 5.0) and: 2. High resolution thematic soil maps following World Reference Base for Soil Resources terminology (20 distinct soil types, median polygon size 1960 m2). Mean SOC storage for each land cover or soil type is multiplied by the areal coverage within the study areas to calculate total storage and landscape partitioning of SOC. Figure 1 illustrates the spatial resolution of the two upscaling tools. It also shows 4 pixels of Landsat TM resolution, representing the highest resolution of previous land cover based SOC storage studies in permafrost terrain. 3      results   Preliminary calculations show that the estimates in the four different areas are between 38-58 kg C m-2 for land cover upscaling and between 37-49 kg C m-2 for soil map upscaling. Both upscaling methods yield higher estimates than what has previously been reported for this area (Hugelius and Kuhry, 2009). A majority of SOC is stored in Cryic Histosols or Folic/Histic Cryosols. Contiguous permafrost peat plateaus are present in all study areas, covering ~20-30 % of the landscape. The mean depth of peat deposits in the four plateaus is between 150-250 cm, but it is highly variable (recorded range 30-420 cm). There is no evidence of any significant deep burial of SOC through cryoturbation processes. References Hugelius G. and Kuhry P. 2009, Landscape partitioning and environmental gradient analyses of soil organic carbon in a permafrost environment. Global Biogeochemical Cycles, 23, GB3006, doi:10.1029/2008GB003419. Kuhry, P., Dorrepaal, E., Hugelius G., Schuur, E.A.G. and Tarnocai C., Potential remobilization of permafrost carbon under future global warming. Permafrost and Periglacial Processes, Submitted.
  •  
5.
  • Hugelius, Gustaf, et al. (författare)
  • High-resolution mapping of ecosystem carbon storage and potential effects of permafrost thaw in periglacial terrain, European Russian Arctic
  • 2011
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 116, s. G03024-
  • Tidskriftsartikel (refereegranskat)abstract
    • This study describes detailed partitioning of phytomass carbon (C) and soil organic carbon (SOC) for four study areas in discontinuous permafrost terrain, Northeast European Russia. The mean aboveground phytomass C storage is 0.7 kg C m(-2). Estimated landscape SOC storage in the four areas varies between 34.5 and 47.0 kg C m(-2) with LCC (land cover classification) upscaling and 32.5-49.0 kg C m(-2) with soil map upscaling. A nested upscaling approach using a Landsat thematic mapper land cover classification for the surrounding region provides estimates within 5 +/- 5% of the local high-resolution estimates. Permafrost peat plateaus hold the majority of total and frozen SOC, especially in the more southern study areas. Burying of SOC through cryoturbation of O- or A-horizons contributes between 1% and 16% (mean 5%) of total landscape SOC. The effect of active layer deepening and thermokarst expansion on SOC remobilization is modeled for one of the four areas. The active layer thickness dynamics from 1980 to 2099 is modeled using a transient spatially distributed permafrost model and lateral expansion of peat plateau thermokarst lakes is simulated using geographic information system analyses. Active layer deepening is expected to increase the proportion of SOC affected by seasonal thawing from 29% to 58%. A lateral expansion of 30 m would increase the amount of SOC stored in thermokarst lakes/fens from 2% to 22% of all SOC. By the end of this century, active layer deepening will likely affect more SOC than thermokarst expansion, but the SOC stores vulnerable to thermokarst are less decomposed.
  •  
6.
  • Hugelius, Gustaf, et al. (författare)
  • Mapping the degree of decomposition and thaw remobilization potential of soil organic matter in discontinuous permafrost terrain
  • 2012
  • Ingår i: Journal of Geophysical Research. - : American Geophysical Union (AGU). - 0148-0227 .- 2156-2202. ; 117:G2
  • Tidskriftsartikel (refereegranskat)abstract
    • [1] Soil organic matter (SOM) stored in permafrost terrain is a key component in the global carbon cycle, but its composition and lability are largely unknown. We characterize and assess the degree of decomposition of SOM at nine sites representing major land-cover and soil types (including peat deposits) in an area of discontinuous permafrost in the European Russian Arctic. We analyze the elemental and stable isotopic composition of bulk SOM, and the degree of humification and elemental composition of humic acids (HA). The degree of decomposition is low in the O-horizons of mineral soils and peat deposits. In the permafrost free non-peatland soils there is enrichment of13C and 15N, and decrease in bulk C/N ratios indicating more decomposed material with depth. Spectral characterization of HA indicates low humification in O-horizons and peat deposits, but increase in humification in the deeper soil horizons of non-peatland soils, and in mineral horizons underlying peat deposits. GIS based maps indicate that less decomposed OM characteristic of the O-horizon and permafrost peat deposits constitute the bulk of landscape SOM (>70% of landscape soil C). We conclude, however, that permafrost has not been the key environmental factor controlling the current degree of decomposition of SOM in this landscape due to relatively recent permafrost aggradation. In this century, active layer deepening will mainly affect SOM with a relatively high degree of decomposition in deeper mineral soil horizons. Additionally, thawing permafrost in peat plateaus may cause rapid remobilization of less decomposed SOM through thermokarst expansion.
  •  
7.
  • Hugelius, Gustaf, 1980- (författare)
  • Quantity and quality of soil organic matter in permafrost terrain
  • 2011
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • High latitude terrestrial ecosystems are considered key components in the global carbon (C) cycle and hold large reservoirs of soil organic carbon (SOC). Much of this is stored as soil organic matter (SOM) in permafrost soils and peat deposits and is vulnerable to remobilization under future global warming. While the large size and potential vulnerability of arctic SOM reservoirs is recognized, detailed knowledge on its landscape partitioning and quality is poor. This thesis describes total storage, landscape partitioning and lability of SOM stored in permafrost areas of Canada and Russia. Detailed studies of SOC partitioning highlight the importance of especially permafrost peatlands, but also of O-horizons in moist tundra soils and cryoturbated soil horizons. A general characterization of SOM in an area of discontinuous permafrost shows that >70% of the SOC in the landscape is stored in SOM with a low degree of decomposition. Projections of permafrost thaw predict that the amount of SOC stored in the active layer of permafrost soils in this area could double by the end of this century. A lateral expansion of current thermokarst lakes by 30 m would expose comparable amounts of SOC to degradation. The results from this thesis have demonstrated the value of high-resolution studies of SOC storage. It is found that peat plateaus, common in the sporadic and discontinuous permafrost zones, store large quantities of labile SOM and may be highly susceptible to permafrost degradation, especially thermokarst, under future climate warming. Large quantities of labile SOM is also stored in cryoturbated soil horizons which may be affected by active layer warming and deepening. The current upscaling methodology is statistically evaluated and recommendations are given for the design of future studies. To accurately predict responses of periglacial C pools to a warming climate detailed studies of SOC storage and partitioning in different periglacial landscapes are needed.
  •  
8.
  • Hugelius, Gustaf, et al. (författare)
  • Soil Organic Carbon Pools in a Periglacial Landscape; a Case Study from the Central Canadian Arctic
  • 2010
  • Ingår i: Permafrost and Periglacial Processes. - : Wiley. - 1045-6740 .- 1099-1530. ; 21:1, s. 16-29
  • Tidskriftsartikel (refereegranskat)abstract
    • We investigated total storage and landscape partitioning of soil organic carbon (SOC) in continuous permafrost terrain, central Canadian Arctic. The study is based on soil chemical analyses of pedons sampled to 1-m depth at 35 individual sites along three transects. Radiocarbon dating of cryoturbated soil pockets, basal peat and fossil wood shows that cryoturbation processes have been occurring since the Middle Holocene and that peat deposits started to accumulate in a forest-tundra environment where spruce was present (∼6000 cal yrs BP). Detailed partitioning of SOC into surface organic horizons, cryoturbated soil pockets and non-cryoturbated mineral soil horizons is calculated (with storage in active layer and permafrost calculated separately) and explored using principal component analysis. The detailed partitioning and mean storage of SOC in the landscape are estimated from transect vegetation inventories and a land cover classification based on a Landsat satellite image. Mean SOC storage in the 0–100-cm depth interval is 33.8 kg C m−2, of which 11.8 kg C m−2 is in permafrost. Fifty-six per cent of the total SOC mass is stored in peatlands (mainly bogs), but cryoturbated soil pockets in Turbic Cryosols also contribute significantly (17%). Elemental C/N ratios indicate that this cryoturbated soil organic matter (SOM) decomposes more slowly than SOM in surface O-horizons.
  •  
9.
  • Hugelius, Gustaf (författare)
  • Spatial upscaling using thematic maps : an analysis of uncertainties in permafrost soil carbon estimates
  • 2012
  • Ingår i: Global Biogeochemical Cycles. - 0886-6236 .- 1944-9224. ; 26, s. GB2026-
  • Tidskriftsartikel (refereegranskat)abstract
    • Studies of periglacial regions confirm their importance in the global carbon (C) cycle, but estimates of ecosystem C storage or green-house gas fluxes from these remote areas are generally poorly constrained and quantitative estimates of upscaling uncertainties are lacking. In this study, a regional database describing soil organic carbon (SOC) storage in periglacial terrain (European Russian Arctic) was used to evaluate spatial upscaling from point measurements using thematic maps. The selection of classes for upscaling and the need for replication in soil sampling were statistically evaluated. Upscaling using a land cover classification and a soil map estimated SOC storage to 48.5 and 47.0 kg C m(-2), respectively with 95% confidence intervals (CI) within +/- 8%. When corrected for spatial errors in the LCC upscaling proxy, SOC was estimated to 46.5 kg C m(-2) with a 95% CI reflecting propagated variance from both natural variability and spatial errors of +/- 11%. Artificially decreasing the size of the database used for upscaling showed that relatively stable results could be achieved with lower replication in some upscaling classes. Decreased spatial resolution for upscaling from 30 m to 1 km had little impact on SOC estimates in this region, but classification accuracy was dramatically reduced and land cover classes show different, sometimes nonlinear, responses to scale. The methods and recommendations presented here can provide guidelines for any future study where point observations of a variable are upscaled using remotely sensed thematic maps or classifications and potential applications for circum-arctic studies are discussed. For future upscaling studies at large geographic scales, a priori determination of sample sizes and tests to insure unimodal and statistically independent samples are recommended. If these prerequisites are not fulfilled, classes may be merged or subdivided prior to upscaling.
  •  
10.
  • Hugelius, Gustaf, 1980- (författare)
  • Uncertainty analysis for estimates of soil organic carbon storage in permafrost terrain, a regionalstudy from the western Russian Arctic
  • 2011
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • Studies of periglacial regions confirm their importance in the global carbon (C) cycle,but estimates of e.g. soil organic carbon (SOC) storage are poorly constrained and lack quantitativeestimates of errors following upscaling. In this study, a comprehensive regional SOC database from thenorthern Usa River Basin (European Russian Arctic, 55 000 km2) is used to evaluate the currentmethodology of SOC upscaling in periglacial terrain. The selection of classes for upscaling and the need forreplication in soil sampling are statistically evaluated. Upscaling using a land cover classification and a soilmap estimates SOC storage at 48.5 and 47.0 kg C m-2, respectively with 95% confidence intervals (CI)within ±8%. When corrected for spatial errors in the upscaling proxy, SOC is estimated to 46.5 kg C m-2with a 95% CI reflecting propagated variance from both natural variability and spatial errors of ±11%.Artificially decreasing the size of the database used for upscaling shows that relatively stable results can beachieved with lower replication in some upscaling classes. For future upscaling studies at large geographicscales, a priori determination of sample sizes and tests to insure unimodal and statistically independentsamples are recommended. If these prerequisites are not fulfilled, classes may be merged or subdividedprior to upscaling. Decreased spatial resolution for upscaling from 30 m to 1 km has little impact on SOCestimates in this region, but classification accuracy is dramatically reduced and land cover classes show different, sometimes non-linear, responses to scale.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 20
Typ av publikation
tidskriftsartikel (14)
konferensbidrag (5)
doktorsavhandling (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (6)
Författare/redaktör
Kuhry, Peter (16)
Hugelius, Gustaf (14)
Hugelius, Gustaf, 19 ... (6)
Koven, C. D. (4)
Virtanen, Tarmo (3)
Crill, Patrick (3)
visa fler...
Grosse, G. (3)
Schuur, E. A. G. (3)
Routh, Joyanto (2)
Palmtag, Juri (2)
Kaverin, Dmitry (2)
McGuire, A.D. (2)
Schaefer, K. (2)
Tarnocai, Charles (2)
Schuur, Edward A. G. (1)
McGuire, A. David (1)
Strauss, J. (1)
Ciais, P. (1)
Romanovsky, V. E. (1)
Gustafsson, Örjan (1)
Rinke, A. (1)
Brovkin, V. (1)
Semiletov, Igor (1)
Kaislahti Tillman, P ... (1)
Yu, Z. (1)
Christensen, Torben (1)
Routh, Joyanto, 1968 ... (1)
Becher, Marina (1)
Wookey, Philip, Prof ... (1)
Jones, J. B. (1)
Holzkämper, Steffen (1)
Sannel, A. Britta K. (1)
Grosse, Guido (1)
Sjöberg, Ylva (1)
Lawrence, D.M. (1)
Tesi, Tommaso (1)
Elberling, B. (1)
Krinner, G. (1)
Anthony, K. M. Walte ... (1)
Dudarev, Oleg (1)
Fan, Z. (1)
Koven, Charles D. (1)
Harden, Jennifer W. (1)
Pluchon, Nathalie (1)
Kuhry, Peter, Profes ... (1)
Ping, Chien-Lu (1)
Camill, Phillip (1)
Jorgenson, Torre (1)
Michaelson, Gary J. (1)
O'Donnell, Jonathan ... (1)
visa färre...
Lärosäte
Stockholms universitet (20)
Linköpings universitet (3)
Umeå universitet (1)
Lunds universitet (1)
Sveriges Lantbruksuniversitet (1)
Språk
Engelska (20)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (19)
Lantbruksvetenskap (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy