SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huitema Alwin) srt2:(2020-2024)"

Sökning: WFRF:(Huitema Alwin) > (2020-2024)

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Boosman, René J, et al. (författare)
  • Toxicity of pemetrexed during renal impairment explained-Implications for safe treatment
  • 2021
  • Ingår i: International Journal of Cancer. - : John Wiley & Sons. - 0020-7136 .- 1097-0215. ; 149:8, s. 1576-1584
  • Tidskriftsartikel (refereegranskat)abstract
    • Pemetrexed is an important component of first line treatment in patients with non-squamous non-small cell lung cancer. However, a limitation is the contraindication in patients with renal impairment due to hematological toxicity. Currently, it is unknown how to safely dose pemetrexed in these patients. The aim of our study was to elucidate the relationship between pemetrexed exposure and toxicity to support the development of a safe dosing regimen in patients with renal impairment. A population pharmacokinetic/pharmacodynamic analysis was performed based on phase II study results in three patients with renal dysfunction, supplemented with data from 106 patients in early clinical studies. Findings were externally validated with data of different pemetrexed dosing regimens. Alternative dosing regimens were evaluated using the developed model. We found that pemetrexed toxicity was driven by the time above a toxicity threshold concentration. The threshold for vitamin-supplemented patients was 0.110 mg/mL (95% CI: 0.092-0.146 mg/mL). It was observed that in patients with renal impairment (estimated glomerular filtration rate [eGFR]: <45 mL/min) the approved dose of 500 mg/m2 would yield a high probability of severe neutropenia in the range of 51.0% to 92.6%. A pemetrexed dose of 20 mg for patients (eGFR: 20 mL/min) is shown to be neutropenic-equivalent to the approved dose in patients with adequate renal function (eGFR: 90 mL/min), but would result in an approximately 13-fold lower area under the concentration-time curve. The pemetrexed exposure-toxicity relationship is explained by a toxicity threshold and substantially different from previously thought. Without prophylaxis for toxicity, it is unlikely that a therapeutic dose can be safely administered to patients with renal impairment.
  •  
2.
  • Chu, Wan-Yu, et al. (författare)
  • Pharmacokinetic/Pharmacodynamic Modelling of Allopurinol, its Active Metabolite Oxypurinol, and Biomarkers Hypoxanthine, Xanthine and Uric Acid in Hypoxic-Ischemic Encephalopathy Neonates
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 61:2, s. 321-333
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Allopurinol, an xanthine oxidase (XO) inhibitor, is a promising intervention that may provide neuroprotection for neonates with hypoxic-ischemic encephalopathy (HIE). Currently, a double-blind, placebo-controlled study (ALBINO, NCT03162653) is investigating the neuroprotective effect of allopurinol in HIE neonates.OBJECTIVE: The aim of the current study was to establish the pharmacokinetics (PK) of allopurinol and oxypurinol, and the pharmacodynamics (PD) of both compounds on hypoxanthine, xanthine, and uric acid in HIE neonates. The dosage used and the effect of allopurinol in this population, either or not undergoing therapeutic hypothermia (TH), were evaluated.METHODS: Forty-six neonates from the ALBINO study and two historical clinical studies were included. All doses were administered on the first day of life. In the ALBINO study (n = 20), neonates received a first dose of allopurinol 20 mg/kg, and, in the case of TH (n = 13), a second dose of allopurinol 10 mg/kg. In the historical cohorts (n = 26), neonates (all without TH) received two doses of allopurinol 20 mg/kg in total. Allopurinol and oxypurinol population PK, and their effects on inhibiting conversions of hypoxanthine and xanthine to uric acid, were assessed using nonlinear mixed-effects modelling.RESULTS: Allopurinol and oxypurinol PK were described by two sequential one-compartment models with an autoinhibition effect on allopurinol metabolism by oxypurinol. For allopurinol, clearance (CL) was 0.83 L/h (95% confidence interval [CI] 0.62-1.09) and volume of distribution (Vd) was 2.43 L (95% CI 2.25-2.63). For metabolite oxypurinol, CL and Vd relative to a formation fraction (fm) were 0.26 L/h (95% CI 0.23-0.3) and 11 L (95% CI 9.9-12.2), respectively. No difference in allopurinol and oxypurinol CL was found between TH and non-TH patients. The effect of allopurinol and oxypurinol on XO inhibition was described by a turnover model of hypoxanthine with sequential metabolites xanthine and uric acid. The combined allopurinol and oxypurinol concentration at the half-maximal XO inhibition was 0.36 mg/L (95% CI 0.31-0.42).CONCLUSION: The PK and PD of allopurinol, oxypurinol, hypoxanthine, xanthine, and uric acid in neonates with HIE were described. The dosing regimen applied in the ALBINO trial leads to the targeted XO inhibition in neonates treated with or without TH.
  •  
3.
  • Chu, Wan-Yu, et al. (författare)
  • Semi-mechanistic Modeling of Hypoxanthine, Xanthine, and Uric Acid Metabolism in Asphyxiated Neonates
  • 2022
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 61:11, s. 1545-1558
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and objective: Previously, we developed a pharmacokinetic-pharmacodynamic model of allopurinol, oxypurinol, and biomarkers, hypoxanthine, xanthine, and uric acid, in neonates with hypoxic-ischemic encephalopathy, in which high initial biomarker levels were observed suggesting an impact of hypoxia. However, the full pharmacodynamics could not be elucidated in our previous study. The current study included additional data from the ALBINO study (NCT03162653) placebo group, aiming to characterize the dynamics of hypoxanthine, xanthine, and uric acid in neonates with hypoxic-ischemic encephalopathy.Methods: Neonates from the ALBINO study who received allopurinol or placebo mannitol were included. An extended population pharmacokinetic-pharmacodynamic model was developed based on the mechanism of purine metabolism, where synthesis, salvage, and degradation via xanthine oxidoreductase pathways were described. The initial level of the biomarkers was a combination of endogenous turnover and high disease-related amounts. Model development was accomplished by nonlinear mixed-effects modeling (NONMEM®, version 7.5).Results: In total, 20 neonates treated with allopurinol and 17 neonates treated with mannitol were included in this analysis. Endogenous synthesis of the biomarkers reduced with 0.43% per hour because of precursor exhaustion. Hypoxanthine was readily salvaged or degraded to xanthine with rate constants of 0.5 1/h (95% confidence interval 0.33-0.77) and 0.2 1/h (95% confidence interval 0.09-0.31), respectively. A greater salvage was found in the allopurinol treatment group consistent with its mechanism of action. High hypoxia-induced initial levels of biomarkers were quantified, and were 1.2-fold to 2.9-fold higher in neonates with moderate-to-severe hypoxic-ischemic encephalopathy compared with those with mild hypoxic-ischemic encephalopathy. Half-maximal xanthine oxidoreductase inhibition was achieved with a combined allopurinol and oxypurinol concentration of 0.68 mg/L (95% confidence interval 0.48-0.92), suggesting full xanthine oxidoreductase inhibition during the period studied.Cconclusions: This extended pharmacokinetic-pharmacodynamic model provided an adequate description of the complex hypoxanthine, xanthine, and uric acid metabolism in neonates with hypoxic-ischemic encephalopathy, suggesting a positive allopurinol effect on these biomarkers. The impact of hypoxia on their dynamics was characterized, underlining higher hypoxia-related initial exposure with a more severe hypoxic-ischemic encephalopathy status.
  •  
4.
  • Damoiseaux, David, et al. (författare)
  • Physiologically‐based pharmacokinetic model to predict doxorubicin and paclitaxel exposure in infants through breast milk
  • 2023
  • Ingår i: CPT. - : John Wiley & Sons. - 2163-8306. ; 12:12, s. 1931-1944
  • Tidskriftsartikel (refereegranskat)abstract
    • Limited information is available concerning infant exposure and safety when breastfed by mothers receiving chemotherapy. Whereas defining distribution to breast milk is important to infer drug exposure, infant pharmacokinetics also determine to what extent the infant will be exposed to potential toxic effects. We aimed to assess the impact of chemotherapy containing breast milk on infants by predicting systemic and local (intestinal) exposure of paclitaxel and doxorubicin in infants through breast milk using a physiologically-based pharmacokinetic (PBPK) approach. Whole-body PBPK models of i.v. paclitaxel and doxorubicin were extended from the literature, with an oral absorption component to enable predictions in infants receiving paclitaxel or doxorubicin-containing breast milk. For safety considerations, worst-case scenarios were explored. Finally, paclitaxel and doxorubicin exposures in plasma and intestinal tissue of infants following feeding of breast milk from paclitaxel- or doxorubicin-treated mothers were simulated and breast milk discarding strategies were evaluated. The upper 95th percentile of the predicted peak concentrations in peripheral venous blood were 3.48 and 0.74 nM (0.4%–1.7% and 0.1%–1.8% of on-treatment) for paclitaxel and doxorubicin, respectively. Intestinal exposure reached peak concentrations of 1.0 and 140 μM for paclitaxel and doxorubicin, respectively. Discarding breast milk for the first 3 days after maternal chemotherapy administration reduced systemic and tissue exposures even further, to over 90% and 80% for paclitaxel and doxorubicin, respectively. PBPK simulations of chemotherapy exposure in infants after breastfeeding with chemotherapy containing breast milk suggest that particularly local gastrointestinal adverse events should be monitored, whereas systemic adverse events are not expected.
  •  
5.
  • Damoiseaux, David, et al. (författare)
  • Population Pharmacokinetic Modelling to Support the Evaluation of Preclinical Pharmacokinetic Experiments with Lorlatinib
  • 2022
  • Ingår i: Journal of Pharmaceutical Sciences. - : Elsevier. - 0022-3549 .- 1520-6017. ; 111:2, s. 495-504
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of transporters and enzymes on drug pharmacokinetics is increasingly evaluated using genetically modified animals that have these proteins either knocked-out or their human orthologues transgenically expressed. Analysis of pharmacokinetic data obtained in such experiments is typically performed using non-compartmental analysis (NCA), which has limitations such as not being able to identify the PK parameter that is affected by the genetic modification of the enzymes or transporters and the requirement of intense and homogeneous sampling of all subjects. Here we used a compartmental population pharmacokinetic modeling approach using PK data from a series of genetically modified mouse experiments with lorlatinib to extend the results and conclusions from previously reported NCA analyses. A compartmental population pharmacokinetic model was built and physiologically plausible covariates were evaluated for the different mouse strains. With the model, similar effects of the strains on the area under the concentration-time curve (AUC) from 0 to 8 hours were found as for the NCA. Additionally, the differences in AUC between the strains were explained by specific effects on clearance and bioavailability for the strain with human expressing CYP3A4. Finally, effects of multidrug efflux transporters ATP-binding cassette (ABC) sub-family B member 1 (ABCB1) and G member 2 (ABCG2) on brain efflux were quantified. Use of compartmental population PK modeling yielded additional insight into the role of drug-metabolizing enzymes and drug transporters in mouse experiments compared to the NCA. Furthermore, these models allowed analysis of heterogeneous pooled datasets and the sparse organ concentration data in contrast to classical NCA analyses.
  •  
6.
  • Damoiseaux, David, et al. (författare)
  • Predicting Chemotherapy Distribution into Breast Milk for Breastfeeding Women Using a Population Pharmacokinetic Approach
  • 2023
  • Ingår i: Clinical Pharmacokinetics. - : Springer Nature. - 0312-5963 .- 1179-1926. ; 62:7, s. 969-980
  • Tidskriftsartikel (refereegranskat)abstract
    • Background and ObjectiveInformation on the distribution of chemotherapeutic drugs to breast milk is scarce, and reports are limited to small sample sizes. Anecdotal pharmacokinetic data have typically been acquired from lactating but non-breastfeeding patients who collect breast milk by means of an expression pump, which might not necessarily be representative for a breastfeeding population due to differences in milk production. Consequently, little is known about the variability of chemotherapy distribution to breast milk and the effect of milk production on the distribution of chemotherapy to breast milk. Our aim was to predict chemotherapy distribution to breast milk in a more realistic breastfeeding population and evaluate the effect of discarding breast milk on the potential chemotherapy exposure in infants.MethodsWe developed a population pharmacokinetic model that described the breast milk production and the chemotherapy distribution to breast milk of a non-breastfeeding population, linked it to plasma pharmacokinetics, and extrapolated this to a breastfeeding population.ResultsWe found that cumulative relative infant doses (RID) were higher than 10% for cyclophosphamide and doxorubicin and approximately 1% for paclitaxel. Simulations allowed us to predict the cumulative RID and its variability in the population for patients with different milk productions and the amount of breast milk that has to be discarded to reach cumulative RIDs below 1%, 0.1%, and 0.01%. Discarding 1–2, 3–6, and 0–1 days of breast milk (depending on the milk production of the patient) resulted in cumulative RID below 1% for cyclophosphamide, doxorubicin, and paclitaxel, respectively.ConclusionOur results may help clinicians to derive the optimal breast milk discarding strategy for an individual patient that wants to breastfeed during chemotherapy and minimize chemotherapy exposure in their infants.
  •  
7.
  • Damoiseaux, David, et al. (författare)
  • Predictiveness of the Human-CYP3A4-Transgenic Mouse Model (Cyp3aXAV) for Human Drug Exposure of CYP3A4-Metabolized Drugs.
  • 2022
  • Ingår i: Pharmaceuticals (Basel, Switzerland). - : MDPI AG. - 1424-8247. ; 15:7
  • Tidskriftsartikel (refereegranskat)abstract
    • The extrapolation of drug exposure between species remains a challenging step in drug development, contributing to the low success rate of drug approval. As a consequence, extrapolation of toxicology from animal models to humans to evaluate safe, first-in-human (FIH) doses requires high safety margins. We hypothesized that a human-CYP3A4-expressing transgenic (Cyp3aXAV) mouse is a more predictive model for human drug exposure of CYP3A4-metabolized small-molecule drugs. Population pharmacokinetic models based on wild-type (WT) and Cyp3aXAV mouse pharmacokinetic data of oral lorlatinib, brigatinib, ribociclib and fisogatinib were allometrically scaled and compared to human exposure. Extrapolation of the Cyp3aXAV mouse model closely predicted the observed human exposure for lorlatinib and brigatinib with a 1.1-fold and 1.0-fold difference, respectively, compared to a 2.1-fold and 1.9-fold deviation for WT-based extrapolations of lorlatinib and brigatinib, respectively. For ribociclib, the extrapolated WT mouse model gave better predictions with a 1.0-fold deviation compared to a 0.3-fold deviation for the extrapolated Cyp3aXAV mouse model. Due to the lack of a human population pharmacokinetic model for fisogatinib, only median maximum concentration ratios were calculated, resulting in ratios of 1.0 and 0.6 for WT and Cyp3aXAV mice extrapolations, respectively. The more accurate predictions of human exposure in preclinical research based on the Cyp3aXAV mouse model can ultimately result in FIH doses associated with improved safety and efficacy and in higher success rates in drug development.
  •  
8.
  • Damoiseaux, David, et al. (författare)
  • Presence of Five Chemotherapeutic Drugs in Breast Milk as a Guide for the Safe Use of Chemotherapy During Breastfeeding : Results From a Case Series.
  • 2022
  • Ingår i: Clinical Pharmacology and Therapeutics. - : John Wiley & Sons. - 0009-9236 .- 1532-6535. ; 112:2, s. 404-410
  • Tidskriftsartikel (refereegranskat)abstract
    • Little is known about infant's safety of chemotherapy during breastfeeding where evidence is limited to a few case reports. This lack of knowledge has led to a general tendency to advise against breastfeeding during cytotoxic therapy despite the overwhelming benefits that breastfeeding offers to both the mothers and their children. In this case series, the presence of five chemotherapies in breast milk was determined. The aim was to obtain insight into the presence of these drugs in breast milk to inform and help clinicians in making informed decisions for women who want to breastfeed. Three patients collected 24-hour samples of breast milk every day for 1, 2, or 3 weeks after chemotherapy, 210 in total. After determination of drug concentrations, the infant daily dose, relative daily infant dose (RID%) and cumulative RID were calculated. Cumulative RIDs in patients varied from 10% to values lower than 1%. Rich data allowed us to design a table which gives predictions on the amount of days that breast milk has to be discarded to reach cumulative RIDs below 5, 1, and 0.1% for each compound. For cyclophosphamide, paclitaxel, and carboplatin, cumulative RIDs below 1 or 0.1% are reached if breast milk is discarded for 1-3 days after administration. This might suggest that breastfeeding in between cycles is an option. However, other pharmacological parameters should also be taken into consideration. For doxorubicin, also the levels of the active metabolite doxorubicinol need quantification. Similarly, breastfeeding during treatment with cisplatin might give substantial exposure and we advise caution.
  •  
9.
  • de Jong, Karen, et al. (författare)
  • High accumulation of nivolumab in human breast milk : A case report
  • 2023
  • Ingår i: Biomedicine and Pharmacotherapy. - : Elsevier BV. - 0753-3322 .- 1950-6007. ; 166
  • Tidskriftsartikel (refereegranskat)abstract
    • Nivolumab is an immunotherapeutic monoclonal antibody (mAb) that is used for the treatment of several types of cancer. The evidence on its use during lactation is lacking. Here, we report on a 39-year-old woman with metastasized melanoma who was treated with 480 mg nivolumab every four weeks during lactation. Breast milk samples were collected over the course of 34 days, including two cycles of nivolumab. The highest measured concentration of nivolumab during the first cycle was 503 ng/mL at day 13. The cumulative relative infant dose (RID) over the first cycle (28 days) was 9.8 %. The highest overall measured nivolumab concentration was 519 ng/mL at day 33, five days after administration of the second nivolumab cycle. Nivolumab seems to accumulate in breast milk over two consecutive cycles, hence the RIDs of consecutive cycles are expected to be higher. To draw further conclusions regarding safety of breastfeeding during nivolumab therapy, more information about the oral bioavailability of nivolumab in newborns, the nivolumab steady-state concentrations in breast milk and its pharmacodynamic effects are needed.
  •  
10.
  • de Rouw, Nikki, et al. (författare)
  • Rethinking the Application of Pemetrexed for Patients with Renal Impairment : A Pharmacokinetic Analysis
  • 2021
  • Ingår i: Clinical Pharmacokinetics. - : ADIS INT LTD. - 0312-5963 .- 1179-1926. ; 60:5, s. 649-654
  • Tidskriftsartikel (refereegranskat)abstract
    • Background Pemetrexed is used for the treatment for non-small cell lung cancer and mesothelioma. Patients with renal impairment are withheld treatment with this drug as it is unknown what dose is well tolerated in this population. Objective The purpose of our study was to investigate the pharmacokinetics (PK) of pemetrexed in patients with renal impairment. Methods A population PK analysis of pemetrexed was performed using non-linear mixed-effects modelling with phase I data obtained from the manufacturer. Additionally, the impact of renal function on pemetrexed PK was assessed with a simulation study using the developed PK model and a previously developed PK model lacking the phase I data. Results The dataset included 548 paired observations of 47 patients, with a wide range of estimated glomerular filtration rates (eGFR; 14.4-145.6 mL/min). Pemetrexed PK were best described by a three-compartment model with eGFR (calculated using the Chronic Kidney Disease-Epidemiology Collaboration [CKD-EPI] formula) as a linear covariate on renal pemetrexed clearance. Using the developed model, we found that renal clearance accounts for up to 84% (95% confidence interval 69-98%) of total pemetrexed clearance, whereas the manufacturer previously reported a 50% contribution of renal clearance. Conclusion Renal function is more important for the clearance of pemetrexed than previously thought and this should be taken into account in patients with renal impairment. Furthermore, a third compartment may contribute to prolonged exposure to pemetrexed during drug washout.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy