SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hulth Stefan 1965) srt2:(2020-2021)"

Sökning: WFRF:(Hulth Stefan 1965) > (2020-2021)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Gilbert, F., et al. (författare)
  • Sediment reworking by the burrowing polychaete Hediste diversicolor modulated by environmental and biological factors across the temperate North Atlantic. A tribute to Gaston Desrosiers
  • 2021
  • Ingår i: Journal of Experimental Marine Biology and Ecology. - : Elsevier BV. - 0022-0981. ; 541
  • Tidskriftsartikel (refereegranskat)abstract
    • Particle mixing and irrigation of the seabed by benthic fauna (bioturbation) have major impacts on ecosystem functions such as remineralization of organic matter and sediment-water exchange. As a tribute to Prof. Gaston Desrosiers by the Nereis Park association, eighteen laboratories carried out a collaborative experiment to acquire a global snapshot of particle reworking by the polychaete Hediste diversicolor at 16 sites surrounding the Northern Atlantic. Organisms and soft sediments were collected during May - July at different geographical locations and, using a common laboratory protocol, particulate fluorescent tracers (`luminophores') were used to quantify particle transport over a 10-day period. Particle mixing was quantified using the maximum penetration depth of tracers (MPD), particle diffusive coefficients (D-b), and non-local transport coefficients (r). Non-local coefficients (reflecting centimeter scale transport steps) ranged from 0.4 to 15 yr(-1), and were not correlated across sites with any measured biological (biomass, biovolume) or environmental parameters (temperature, grain size, organic matter). Maximum penetration depths (MPD) averaged similar to 10.7 cm (6.5-14.5 cm), and were similar to the global average bioturbation depth inferred from short-lived radiochemical tracers. MPD was also not correlated with measures of size (individual biomass), but increased with grain size and decreased with temperature. Bio-diffusion (D-b) correlated inversely with individual biomass (size) and directly with temperature over the environmental range (Q(10) similar to 1.7; 5-21 degrees C). The transport data were comparable in magnitude to rates reported for localized H. diversicolor populations of similar size, and confirmed some but not all correlations between sediment reworking and biological and environmental variables found in previous studies. The results imply that measures of particle reworking activities of a species from a single location can be generally extrapolated to different populations at similar conditions.
  •  
2.
  • Wittorf, Lea, et al. (författare)
  • Habitat diversity and type govern potential nitrogen loss by denitrification in coastal sediments and differences in ecosystem-level diversities of disparate N2O reducing communities
  • 2020
  • Ingår i: FEMS Microbiology Ecology. - : Oxford University Press (OUP). - 0168-6496 .- 1574-6941. ; 96:9
  • Tidskriftsartikel (refereegranskat)abstract
    • © 2020 Oxford University Press. All rights reserved. In coastal sediments, excess nitrogen is removed primarily by denitrification. However, losses in habitat diversity may reduce the functional diversity of microbial communities that drive this important filter function. We examined how habitat type and habitat diversity affects denitrification and the abundance and diversity of denitrifying and N2O reducing communities in illuminated shallow-water sediments. In a mesocosm experiment, cores from four habitats were incubated in different combinations, representing ecosystems with different habitat diversities. We hypothesized that habitat diversity promotes the diversity of N2O reducing communities and genetic potential for denitrification, thereby influencing denitrification rates. We also hypothesized that this will depend on the identity of the habitats. Habitat diversity positively affected ecosystem-level diversity of clade II N2O reducing communities, however neither clade I nosZ communities nor denitrification activity were affected. The composition of N2O reducing communities was determined by habitat type, and functional gene abundances indicated that silty mud and sandy sediments had higher genetic potentials for denitrification and N2O reduction than cyanobacterial mat and Ruppia maritima meadow sediments. These results indicate that loss of habitat diversity and specific habitats could have negative impacts on denitrification and N2O reduction, which underpin the capacity for nitrogen removal in coastal ecosystems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy