SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Hultman Lars Professor) srt2:(2015-2019)"

Sökning: WFRF:(Hultman Lars Professor) > (2015-2019)

  • Resultat 1-10 av 41
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Goyenola, Cecilia, 1983- (författare)
  • Nanostructured carbon-based thin films : prediction and design
  • 2015
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Carbon-based thin films are a vast group of materials of great technological importance. Thanks to the different bonding options for carbon, a large variety of structures (from amorphous to nanostructured) can be achieved in the process of film synthesis. The structural diversity increases even more if carbon is combined with relatively small quantities of atoms of other elements. This results in a set of materials with many different interesting properties for a wide range of technological applications.This doctoral thesis is about nanostructured carbon-based thin films. In particular, the focus is set on theoretical modeling, prediction of structural features and design of sulfo carbide (CSx) and carbon fluoride (CFx) thin films.The theoretical approach follows the synthetic growth concept (SGC) which is based on the density functional theory. The SGC departure point is the fact that the nanostructured films of interest can be modeled as assemblies of low dimensional units (e.g., finite graphene-like model systems), similarly to modeling graphite as stacks of graphene sheets. Moreover, the SGC includes a description of the groups of atoms that act as building blocks (i.e., precursors) during film deposition, as well as their interaction with the growing film.This thesis consists of two main parts:Prediction: In this work, I show that nanostructured CSx thin films can be expected for sulfur contents up to 20 atomic % with structural characteristics that go from graphite-like to fullerene-like (FL). In the case of CFx thin films, a diversity of structures are predicted depending on the fluorine concentration. Short range ordered structures, such as FL structure, can be expected for low concentrations (up to 5 atomic %). For increasing fluorine concentration, diamond-like and polymeric structures should predominate. As a special case, I also studied the ternary system CSxFy. The calculations show that CSxFy thin films with nanostructured features should be possible to synthesize at low sulfur and fluorine concentrations and the structural characteristics can be described and explained in terms of the binaries CSx and CFx.Design: The carbon-based thin films predicted in this thesis were synthesized by magnetron sputtering. The results from my calculations regarding structure and composition, and analysis of precursors (availability and role during deposition process) were successfully combined with the experimental techniques in the quest of obtaining films with desired structural features and understanding their properties.
  •  
2.
  • Ektarawong, Annop (författare)
  • First-principles study of configurational disorder in icosahedral boron-rich solids
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis is a theoretical study of configurationally disordered icosahedral boronrich solids, in particular boron carbides, using density functional theory and alloy theory. The goal is to resolve discrepancies, regarding the properties of boron carbides, between experiments and previous theoretical calculations which have been a controversial issue in the field of icosahedral boron-rich solids. For instance, B13C2 is observed experimentally to be a semiconductor, meanwhile electronic band structure calculations reveal a metallic character of B13C2 due to its electron deficiency. In B4C, on the other hand, the experimentally observed band gap is unexpectedly smaller, not the usual larger, than that of standard DFT calculations. Another example is given by the existence of a small structural distortion in B4C, as predicted in theoretical calculations, which reduces the crystal symmetry from the experimentally observed rhombohedral (R3m) to the based-centered monoclinic (Cm). Since boron carbide is stable as a single-phase over a broad composition range (~8-20 at.% C), substitution of boron and carbon atoms for one another is conceivable. For this reason, the discrepancies have been speculated in the literature, without a proof, to originate from configurational disorder induced by substitutional defects. However, owing to its complex  atomic structure, represented by 12-atom icosahedra and 3-atom intericosahedral chains, a practical alloy theory method for direct calculations of the properties of the relevant configurations of disordered boron carbides, as well as for a thermodynamic  assessment of their stability has been missing.In this thesis, a new approach, the superatom-special quasirandom structure (SA-SQS), has been developed. The approach allows one to model configurational disorder in boron carbide, induced by high concentrations of low-energy B/C substitutional defects. B13C2 and B4C are the two stoichiometries, mainly considered in this study, as they are of particular importance and have been in focus in the literature. The results demonstrate that, from thermodynamic considerations, both B13C2 and B4C configurationally disorder at high temperature. In the case of B13C2, the configurational disorder splits off some valence states into the band gap that in turn compensates the electron deficiency in  ordered B13C2, thus resulting in a semiconducting character. As for B4C, the configurational disorder eliminates the monoclinic distortion, thus resulting in the restoration of the higher rhombohedral symmetry. Configurational disorder can also account for an excel lent agreement on elastic moduli of boron carbide between theory and experiment. Thus, several of the previous discrepancies between theory and experiments are resolved.Inspired by attempts to enhance the mechanical properties of boron suboxide by fabricating boron suboxide-boron carbide composites, as recently suggested in the literature, the SA-SQS approach is used for modeling mixtures of boron suboxide (B6O) and boron carbide (B13C2), denoted by pseudo-binary (B6O)1–x(B13C2)x alloys. The knowledge of configurational disorder, gained from the previous studies of boron carbide, is applied to model the mixing alloys. By investigating the thermodynamics of mixing between B6O and B13C2, the phase diagram of the (B6O)1–x(B13C2)x alloys is outlined and it reveals the existence of a miscibility gap at all temperatures up to the melting point, indicating the coexistence of B6O-rich and either ordered or disordered B13C2-rich domains in (B6O)1–x(B13C2)x alloys under equilibrium condition. However, a limited intermixing of B6O and B13C2 to form solid solutions at high temperature is predicted, e.g. a solid solution of ~5% B13C2 in B6O and ~20% B6O in B13C2 at 2000 K.
  •  
3.
  • Engberg, David (författare)
  • Atom Probe Tomography of TiSiN Thin Films
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis concerns the wear resistant coating TiSiN and the development of the analysis technique atom probe tomography (APT) applied to this materials system. The technique delivers compositional information through time-of-flight mass spectrometry, with sub-nanometer precision in 3D for a small volume of the sample. It is thus a powerful technique for imaging the local distribution of elements in micro and nanostructures. To gain the full benefits of the technique for the materials system in question, I have developed a method that combines APT with isotopic substitution, here demonstrated by substitution of natN with 15N. This alters the time-of-flight of ions with of one or more N and will thereby enable the differentiation of the otherwise inseparable isotopes 14N and 28Si. Signs of small-scale fluctuations in the data led the development of an algorithm needed to properly visualize these fluctuations. A method to identify the best sampling parameter for visualization of small-scale compositional fluctuations was added to an algorithm originally designed to find the best sampling parameters for measuring and visualizing strong compositional variations. With the identified sampling parameters, the nano-scale compositional fluctuations of Si in the metal/metalloid sub-lattice could be visualized. The existence and size of these fluctuations were corroborated by radial distribution functions, a technique independent of the previously determined sampling parameter. The radial distribution function algorithm was also developed further to ease in the interpretation. The number of curves could thereby be reduced by showing elements, rather than single and molecular ions (of which there were several different kinds). The improvement of the algorithm also allowed interpretation of signs regarding the stoichiometry of SiNy. With a combination of analytical transmission electron microscopy and APT we show Si segregation on the nanometer scale in arc-deposited Ti0.92Si0.0815N and Ti0.81Si0.1915N thin films. APT composition maps and proximity histograms generated from Ti-rich domains show that the TiN contain at least ~2 at. % Si for Ti0.92Si0.08N and ~5 at. % Si for Ti0.81Si0.19N, thus confirming the formation of solid solutions. The formation of relatively pure SiNy domains in the Ti0.81Si0.19N films is tied to pockets between microstructured, columnar features in the film. Finer SiNy enrichments seen in APT possibly correspond to tissue layers around TiN crystallites, thus effectively hindering growth of TiN crystallites, causing TiN renucleation and thus explaining the featherlike nanostructure within the columns of these films.
  •  
4.
  • Fashandi, Hossein, 1984- (författare)
  • Novel Layered and 2D Materials for Functionality Enhancement of Contacts and Gas Sensors
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Chemical gas sensors are widely-used electronic devices for detecting or measuring the density levels of desired gas species. In this study, materials with established or potential applications for gas sensors are treated. For the case of high-temperature applications (≈ 600 °C), semiconductor-based gas sensors suffer from rapid oxidation of the metallic ohmic contacts, the same cause-of-failure as for the general case of high-temperature semiconductor electronics. 4H-SiC is an ideal semiconductor for high-temperature applications. Ti3SiC2 is a known ohmic contact to 4H-SiC with the known two-step synthesis process of post-annealing of pre-deposited Ti/Al multilayers or sputter-deposition of Ti3SiC2 films at > 900 °C. Here, sputter-deposition of Ti on 4H-SiC at > 900 °C is presented as a novel single-step method for the synthesis of Ti3SiC2 ohmic contacts, based on a concurrent reaction between sputter-deposited Ti and 4HSiC. Ti3SiC2, similar to any other known ohmic contact, degrade rapidly in high-temperature oxidizing ambient. To try to overcome this obstacle, noble metal diffusion into Ti3SiC2 has been s studied with the goal to retain ohmic properties of Ti3SiC2 and harnessing oxidation resistivity of noble metals. A novel exchange intercalation between Ti3SiC2 and Au is discovered which results in the almost complete exchange of Si with Au giving rise to novel Ti3AuC2 and Ti3Au2C2. Ti3IrC2 is also synthesized through exchange intercalation of Ir into Ti3Au2C2. All the aforementioned phases showed ohmic properties to 4H-SiC. This technique is also studied based on Ti2AlC and Ti3AlC2 resulting in the synthesis of novel Ti2Au2C and Ti3Au2C2, respectively. Using Ti3AuC2 and an Au/IrOx capping layer, an ohmic contact was manufactured, which maintained ohmic properties and showed no structural defects after 1000 h of aging at 600 °C air.Ti3SiC2 is a member of a large family of materials known as Mn+1AXn phases. While exchange reactions of Si (or Al) planes in Ti3SiC2 (Ti2AlC and Ti3AlC2) is presented here, a world-wide research already exists on chemical removal of the same atomic planes from different Mn+1AXn phases and the synthesis of Mn+1Xn sheets known as MXenes. I performed a theoretical study regarding simulation of electronic and structural properties of more than120 different possible MXene phases. The results show that some MXene phases, when terminated by particular gas species, turn into Dirac materials. That is, they possess massless Dirac fermions with different properties compared to graphene such as higher number of Dirac points at the Fermi level, giant spin orbit splitting, and preserved 2D-type electronic properties by extending the dimensionality. The general substantial change of the electronic properties of MXenes under different gas adsorption configurations stands out and can thus be harnessed for sensing applications.Growth of monolayer iron oxide on porous Pt sensing layers is another novel approach used in this study for applying the unique properties of 2D materials for gas sensors. A low temperature shift in CO oxidation characteristics is presented. The approach is similar to that previously reported using bulk single crystal Pt substrate, the latter being an unrealistic model for sensors and catalysts. Monolayer-coated Pt sensing layers were fabricated as the metal component of a metal oxide semiconductor (MOS) capacitor device, whereby the electrical response of the MOS device could be used to map out the catalytic properties of the sensing layer. The monolayer-coated Pt surface showed to be stable with retained improved catalytic properties for > 200 h. The MOS device measurements are here utilized as a handy method for in-situ monitoring of the surface chemical properties of the monolayer-coated Pt and the approach is highly functional for use and characterization of monolayer coatings of widely used sensingor catalytic layers.
  •  
5.
  • Halim, Joseph, 1985- (författare)
  • Synthesis and transport properties of 2D transition metal carbides (MXenes)
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Since the isolation and characterization of graphene, there has been a growing interest in 2D materials owing to their unique properties compared to their 3D counterparts. Recently, a family of 2D materials of early transition metal carbides and nitrides, labelled MXenes, has been discovered (Ti2CTz, Ti3C2Tz, Mo2TiC2Tz, Ti3CNTz, Ta4C3Tz, Ti4N3Tz among many others), where T stands for surface-terminating groups (O, OH, and F). MXenes are mostly produced by selectively etching A layers (where A stands for group A elements, mostly groups 13 and 14) from the MAX phases. The latter are a family of layered ternary carbides and/or nitrides and have a general formula of Mn+1AXn (n = 1-3), where M is a transition metal and X is carbon and/or nitrogen. The produced MXenes have a conductive carbide core and a non-conductive O-, OH- and/or F-terminated surface, which allows them to work as electrodes for energy storage applications, such as Li-ion batteries and supercapacitors.Prior to this work, MXenes were produced in the form of flakes of lateral dimension of about 1 to 2 microns; such dimensions and form are not suitable for electronic characterization and applications. I have synthesized various MXenes (Ti3C2Tz, Ti2CTz and Nb2CTz) as epitaxial thin films, a more suitable form for electronic and photonic applications. These films were produced by HF, NH4HF2 or LiF + HCl etching of magnetron sputtered epitaxial Ti3AlC2, Ti2AlC, and Nb2AlC thin films. For transport properties of the Ti-based MXenes, Ti2CTz and Ti3C2Tz, changing n from 1 to 2 resulted in an increase in conductivity but had no effect on the transport mechanism (i.e. both Ti3C2Tx and Ti2CTx were metallic). In order to examine whether the electronic properties of MXenes differ when going from a few layers to a single flake, similar to graphene, the electrical characterization of a single Ti3C2Tz flake with a lateral size of about 10 μm was performed. These measurements, the first for MXene, demonstrated its metallic nature, along with determining the nature of the charge carriers and their mobility. This indicates that Ti3C2Tz is inherently of 2D nature independent of the number of stacked layers, unlike graphene, where the electronic properties change based on the number of stacked layers.Changing the transition metal from Ti to Nb, viz. comparing Ti2CTz and Nb2CTz thin films, the electronic properties and electronic conduction mechanism differ. Ti2CTz showed metallic-like behavior (resistivity increases with increasing temperature) unlike Nb2CTz where the conduction occurs via variable range hopping mechanism (VRH) - where resistivity decreases with increasing temperature.Furthermore, these studies show the synthesis of pure Mo2CTz in the form of single flakes and freestanding films made by filtering Mo2CTz colloidal suspensions. Electronic characterization of free-standing films made from delaminated Mo2CTz flakes was investigated, showing that a VRH mechanism prevails at low temperatures (7 to ≈ 60 K). Upon vacuum annealing, the room temperature, RT, conductivity of Mo2CTx increased by two orders of magnitude. The conduction mechanism was concluded to be VRH most likely dominated by hopping within each flake.Other Mo-based MXenes, Mo2TiC2Tz and Mo2Ti2C3Tz, showed VRH mechanism at low temperature. However, at higher temperatures up to RT, the transport mechanism was not clearly understood. Therefore, a part of this thesis was dedicated to further investigating the transport properties of Mo-based MXenes. This includes Mo2CTz, out-of-plane ordered Mo2TiC2Tz and Mo2Ti2C3Tz, and vacancy ordered Mo1.33CTz. Magneto-transport of free-standing thin films of the Mo-based MXenes were studied, showing that all Mo-based MXenes have two transport regimes: a VRH mechanism at lower temperatures and a thermally activated process at higher temperatures. All Mo-based MXenes except Mo1.33CTz show that the electrical transport is dominated by inter-flake transfer. As for Mo1.33CTz, the primary electrical transport mechanism is more likely to be intra-flake.The synthesis of vacancy ordered MXenes (Mo1.33CTz and W1.33CTz) raised the question of possible introduction of vacancies in all MXenes. Vacancy ordered MXenes are produced by selective etching of Al and (Sc or Y) atoms from the parent 3D MAX phases, such as (Mo2/3Sc1/3)2AlC, with in-plane chemical ordering of Mo and Sc. However, not all quaternary parent MAX phases form the in-plane chemical ordering of the two M metals; thus the synthesis of the vacancy-ordered MXenes is restricted to a very limited number of MAX phases. I present a new method to obtain MXene flakes with disordered vacancies that may be generalized to all quaternary MAX phases. As proof of concept, I chose Nb-C MXene, as this 2D material has shown promise in several applications, including energy storage, photothermal cell ablation and photocatalysts for hydrogen evolution. Starting from synthetizing (Nb2/3Sc1/3)2AlC quaternary solid solution and etching both the Sc and Al atoms resulted in Nb1.33C material with a large number of vacancies and vacancy clusters. This method may be applicable to other quaternary or higher MAX phases wherein one of the transition metals is more reactive than the other, and it could be of vital importance in applications such as catalysis and energy storage.  
  •  
6.
  • Lai, Chung-Chuan (författare)
  • Phase Formation of Nanolaminated Transition Metal Carbide Thin Films
  • 2017
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Research on inherently nanolaminated transition metal carbides is inspired by their unique properties combining metals and ceramics, such as higher damage tolerance, better machinability and lower brittleness compared to the binary counterparts, yet retaining the metallic conductivity. The interesting properties are related to their laminated structure, composed of transition-metalcarbide layers interleaved by non-transition-metal (carbide) layers. These materials in thin-film form are particularly interesting for potential applications such as protective coatings and electrical contacts. The goal of this work is to explore nanolaminated transition metal carbides from the aspects of phase formation and crystal growth during thin-film synthesis. This was realized by studying phases in select material systems synthesized from two major approaches, namely, fromdirect-deposition and post-deposition treatment.The first approach was used in studies on the Mo-Ga-C and Zr-Al-C systems. In the former system, intriguing properties have been predicted for the 3D phases and their 2D derivatives (socalled MXenes), while in the latter system, the phases are interesting for nuclear applications. In this work, the discovery of a new Mo-based nanolaminated ternary carbide, Mo2Ga2C, is evidenced from thin-film and bulk processes. Its structure was determined using theoretical and experimental techniques, showing that Mo2Ga2C has Ga double-layers in simple hexagonal stacking between adjacent Mo2C layers, and therefore is structurally very similar to Mo2GaC, except for the additional Ga layers. For the Zr-Al-C system, the optimization of phase composition and structure of Zr2Al3C4 in a thin-film deposition process was studied by evaluating the effect of deposition parameters. I concluded that the formation of Zr2Al3C4 is favored with a plasma flux overstoichiometric in Al, and with a minimum lattice-mismatch to the substrates. Consequently, epitaxial Zr2Al3C4 thin film of high quality were deposited on 4H-SiC(001) substrates at 800 °C.With the approach of post-deposition treatment, the studies were focused on a new method of thermally-induced selective substitution reaction of Au for the non-transition-metal layers in nanolaminated carbides. Here, the reaction mechanism has been explored in Al-containing (Ti2AlCand Ti3AlC2) and Ga-containing (Mo2GaC and Mo2Ga2C) phases. The Al and Ga in these phases were selectively replaced by Au while the carbide layers remained intact, resulting in the formation of new layered phases, Ti2Au2C, Ti3Au2C2, Mo2AuC, and Mo2(Au1-xGax)2C, respectively. The substitution reaction was explained by fast outward diffusion of the Al or Ga being attracted to the surface Au, in combination with back-filling of Au, which is chemically inert to the carbide layers,to the vacancies.The substitution reaction was further applied to Ga-containing nanolaminated carbides, (Cr0.5Mn0.5)2GaC and Mo2GaC, motivated by development of novel magnetic nanolaminates. The former experiment resulted in the formation of (Cr0.5Mn0.5)2AuC, where the retained (Cr0.5Mn0.5)2C layers allowed a comparative study on the magnetic properties under the exchange of Ga for Au. After Au substitution, reduction in the Curie temperature and the saturation magnetization were observed, showing a weakened magnetic exchange interaction of the magnetic (Cr0.5Mn0.5)2 Clayers across the Au. In the Mo2GaC case, an Fe-containing MAX phase, Mo2AC with 50 at.% of Fe on the A site, was synthesized through selective substitution of Au-Fe alloy for the Ga layers, showing the first direct evidence for Fe in the MAX-phase structure. The substitution of Fe did not take place on another Mo2GaC sample tested for Fe exchange only, indicating the essential role of Au in catalyzing the Fe-substitution reaction.The knowledge gained from this thesis work contributes to improved approaches for attaining thin films of nanolaminated transition metal carbides with desired phase composition and crystal quality. The reports on the new nanolaminated phases through exchange interactions are likely to expand the family of nanolaminated carbides and advance their properties, and trigger more studies on related (quasi-) 2D materials.
  •  
7.
  • Mühlbacher, Marlene, 1987- (författare)
  • High-resolution characterization of TiN diffusion barrier layers
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Titanium nitride (TiN) films are widely applied as diffusion barrier layers in microelectronic devices. The continued miniaturization of such devices not only poses new challenges to material systems design, but also puts high demands on characterization techniques. To gain understanding of diffusion processes that can eventually lead to failure of the barrier layer and thus of the whole device, it is essential to develop routines to chemically and structurally investigate these layers down to the atomic scale. In the present study, model TiN diffusion barriers with a Cu overlayer acting as the diffusion source were grown by reactive magnetron sputtering on MgO(001) and thermally oxidized Si(001) substrates. Cross-sectional transmission electron microscopy (XTEM) of the pristine samples revealed epitaxial, single-crystalline growth of TiN on MgO(001), while the polycrystalline TiN grown on Si(001) exhibited a [001]-oriented columnar microstructure. Various annealing treatments were carried out to induce diffusion of Cu into the TiN layer. Subsequently, XTEM images were recorded with a high-angle annular dark field detector, which provides strong elemental contrast, to illuminate the correlation between the structure and the barrier efficiency of the single- and polycrystalline TiN layers. Particular regions of interest were investigated more closely by energy dispersive X-ray (EDX) mapping. These investigations are completed by atom probe tomography (APT) studies, which provide a three-dimensional insight into the elemental distribution at the near-interface region with atomic chemical resolution and high sensitivity. In case of the single-crystalline barrier, a uniform Cu-enriched diffusion layer of 12 nm could be detected at the interface after an annealing treatment at 1000 °C for 12 h. This excellent barrier performance can be attributed to the lack of fast diffusion paths such as grain boundaries. Moreover, density-functional theory calculations predict a stoichiometry-dependent atomic diffusion mechanism of Cu in bulk TiN, with Cu diffusing on the N-sublattice for the experimental N/Ti ratio. In comparison, the polycrystalline TiN layers exhibited grain boundaries reaching from the Cu-TiN interface to the substrate, thus providing direct diffusion paths for Cu. However, the microstructure of these columnar layers was still dense without open porosity or voids, so that the onset of grain boundary diffusion could only be found after annealing at 900 °C for 1 h.The present study shows how to combine two high resolution state-of-the-art methods, TEM and APT, to characterize model TiN diffusion barriers. It is shown how to correlate the microstructure with the performance of the barrier layer by two-dimensional EDX mapping and three-dimensional APT. Highly effective Cu-diffusion barrier function is thus demonstrated for single-crystal TiN(001) (up to 1000 °C) and dense polycrystalline TiN (900 °C).
  •  
8.
  • Bakoglidis, Konstantinos D., 1985- (författare)
  • Low Friction and Wear Resistant Carbon Nitride Thin Films for Rolling Components Grown by Magnetron Sputtering
  • 2015
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The scope of this licentiate thesis is the investigation of carbon based thin films suitable for rolling components, especially roller bearings. Carbon and carbon nitride are materials with advantageous tribological properties and high resiliency. Such materials are required in order to withstand the demanding conditions of bearing operation, such as high loads and corrosive environments. A fundamental condition for coated bearings is that the deposition temperature must be striktly limited. Thus, carbon nitride (CNx) thin films were synthesized here at low temperature of 150 oC by different reactive magnetron sputtering techniques, which are mid-frequency magnetron sputtering (MFMS), direct current magnetron sputtering (DCMS), and high power impulse magnetron sputtering (HiPIMS). While DCMS is a very well studied technique for carbon based films, MFMS and HiPIMS are relatively new sputtering techniques for carbon, and especially CNx depositions. Using different magnetron sputtering techniques, different ionization conditions prevail in the chamber during each process and influence the obtained film properties at a great extent. It was found that bias duty cycles and the amount of working gas ions are key parameters and affect the morphology and microstructure as well as the mechanical response of the films. Moreover, different bias voltages, from 20 V up to 120 V were applied during the processes in order to investigate the changes that the different ion energies induce in the film structure.The structural, mechanical and tribological properties of CNx films are also presented in this licentiate thesis. The morphology of CNx films strongly depends on both the deposition technique and ion energy. The special configuration of MFMS mode produces highly homogeneous and dense films even from low applied bias voltages, while in HiPIMS mode high bias voltages above 100 V must be applied in order to produce films with similar structural characteristics. DCMS is also proven as a good technique for homogeneous and dense films. Low bias voltages do not favor  homogeneous structures, thus at 20 V all techniques produced films with columnar structures with intercolumnar voids. High bias voltages influence the N incorporation in the films, with the appearance of re-sputtering of N-containing species and a promotion of sp2 bonding configurations with increasing ion energy. Nevertheless, the different deposition mode influences the sp2 content in different ways, with only MFMS showing a clear increase of sp2 content with increasing bias voltage and HiPIMS showing relatively constant sp2 content. The morphology and microstructure of the CNx films affects their mechanical response, with higher ion energies producing harder films. A dependency of hardness and elastic modulus with increasing ion energy was obtained, where for all deposition modes, hardness and elastic modulus increase linearly with increasing bias voltage. Films with hardness as high as 25 GPa were synthesized by MFMS at 120 V , while the softer film yielded a hardness of 7 GPa and was deposited by HiPIMS at 20 V . The elastic recovery of the films differs with increasing ion energies, presenting a correlation with the C sp2 bond content. The highest elastic recovery of 90% was extracted for the film deposited by MFMS at 120 V and is a value similar to the elastic recovery obtained for FL-CNx films. All films developed compressive residual stresses, depending also on the ion energies and the deposition mode used. It is demonstrated that the induced stresses in the films increase when denser and more homogeneous film morphologies are obtained and with higher Ar intercalcation. Low friction coefficients were obtained for all films between 0.05 and 0.07, although the deposition conditions are not detrimental for the development of friction coefficient. The wear resistance of the films was found to be dependent on the morphology and to some extent on the microstructure of the films. Harder, denser, and more homogeneous films have higher wear resistance. Especially, CNx films deposited by MFMS at 120 V present no wear.The tribological characteristics of the surface of the films were also investigated at nanoscale by a new reciprocal wear test. In this wear test, the recording of the track profile is performed in between consecutive test cycles, eliminating also thermal drift. The very low wear of the films deposited by MFMS at 100 V and 120 V revealed that during the wear test a phase transformation on the surface may take place, possibly graphitization. It is also demonstrated the way that the surface characteristics, such as asperities and roughness affects the tribological measurements. Attention is also turned to the presence of large asperities on the film surface and the way they affect the obtained average friction coefficient and tribological measured data.
  •  
9.
  • Bakoglidis, Konstantinos (författare)
  • Low-friction and wear-resistant carbon nitride coatings for bearing components grown by magnetron sputtering
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The scope of this thesis is the investigation of magnetron sputtered carbon nitride coatings suitable for roller bearing components. The research field of tribology of bearings focuses on minimizing friction between components by improving the lubricants. The development of lubricants is, however, expensive and involves environmentally deleterious chemical byproducts. A solution to avoid such harmful conditions, reduce the processing cost, and more importantly, minimize the friction, is to apply a low-friction and wear-resistant coating on the surface of the bearing. The deposition of such coatings on components can substantially increase their lifetime, reduce the maintenance costs, and eventually increase the reliability of the machinery.Carbon nitride (CNx) coatings have high resiliency and can withstand the demanding conditions of bearing operation. The morphology of CNx coatings is highly affected by applying a negative substrate bias voltage. At high bias (100-120 V ), the coatings become denser and more homogeneous with decreased porosity, resulting in more wear-resistant materials. I also found that the duty cycle of the applied bias affects the layer morphology. Less homogeneous films are produced using lower duty cycles (i.e., in high power impulse magnetron sputtering, HiPIMS) for a specific value of bias voltage. Thus, changing bias voltage, we can manipulate the structure of CNx and design layers, depending on the requirements of the bearing application.My results show that denser films yield higher hardness and wear-resistance, but also higher compressive stress, which is a disadvantage for the coating-substrate adhesion. In order to obtain improved adhesion on bearing steel, we developed an in-situ surface treatment, prior to the CNx deposition, which also surpasses the limitations set by the properties of each material. The steel substrates are successfully pretreated using W or Cr ions originating from a HiPIMS source. Plasma ions are accelerated to the substrates with energies of 900 eV , due to the application of a synchronized high bias voltage, which clean effectively the substrate surface from residual contaminants and strengthen the interfacial bonding.CNx-coated rollers are tested in rolling operation and show the absence of run-in period in all lubrication regimes. This is a big advantage for applications which rotate under boundary lubrication (BL). The coated rollers yield friction coefficients in the range of 0:020 and 0:025 in elastohydrodynamic (EHDL) and hydrodynamic (HDL) lubrication regimes, being lower than the friction coefficients of 0:026-0:052, exhibited by the uncoated rollers. Here, friction decreases steadily with increasing number of cycles, due to the presence of CNx in the contact. In BL, CNx-coated rollers present an increased friction coefficient of 0:052, but the wear is much lower than in the case of uncoated rollers. All rollers are covered with CNx in the wear tracks after the tests, avoiding failures and presenting low abrasive wear. The obtained tribological performance of the CNx-coated rollers in rolling is overall improved compared to the established operation of uncoated rollers. Thus, CNx layers can function as low-friction and wear-resistant coatings protecting the steel components in several roller bearing applications, such as in gearboxes and wheels in automotive, aerospace, marine, and turbine industry.
  •  
10.
  • Edström, Daniel, 1986- (författare)
  • Growth and Mechanical Properties of Transition Metal Nitrides and Carbides
  • 2016
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The atomic-scale dynamical processes at play during film growth cannot be resolved by even the most advanced experimental methods. As such, computational methods, and chiefly classical molecular dynamics, are the only available research tools to study these processes. The investigation of key dynamical processes during thin film growth yields a deeper understanding of the film growth evolution, ultimately allowing for the optimization of experimental parameters and tailoring of film properties. This thesis details the study of fundamental surface dynamics processes, and the role played by primary diffusing species, during TiN film growth, here employed as a model system for transition metal nitrides in general. It is found that Ti adatoms and TiN2 admolecules are the fastest diffusing species, and the species which most rapidly descend from islands onto the growing film. Thus, they are the main contributors and players in driving the layer-by-layer growth mode. TiN3 admolecules, in contrast, are essentially stationary and thereby promote multilayer growth. Large-scale growth simulations reveal that tailoring the incident N/Ti ratio and N kinetic energy significantly affects the growth mode and film microstructure.The mechanical properties of ternary transition metal nitride and carbide alloys, investigated using density functional theory, are also discussed herein, in comparison to recent experimental results. By optimizing the valence electron concentration in these compounds, the occupation of shear-compliant d‑t2g electronic states can be maximized. The investigation of M1M2N alloys, where M1 = Ti or V and M2 = W or Mo, with different structures demonstrates that this optimization leads to enhanced ductility, and thereby toughness, in transition metal nitride alloys regardless of the degree of ordering on the metal sublattice. Estimations based on the calculation of the mechanical properties of the corresponding M1M2C transition metal carbide alloys indicate that these materials remain brittle. However, charge density analysis and calculations of stress/strain curves reveal features commonly associated with ductile materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 41
Typ av publikation
tidskriftsartikel (18)
doktorsavhandling (15)
licentiatavhandling (7)
bokkapitel (1)
Typ av innehåll
övrigt vetenskapligt/konstnärligt (22)
refereegranskat (19)
Författare/redaktör
Hultman, Lars, Profe ... (25)
Hultman, Lars, Profe ... (14)
Greczynski, Grzegorz ... (7)
Lu, Jun, 1962- (6)
Hsiao, Ching-Lien, 1 ... (5)
Birch, Jens, 1960- (5)
visa fler...
Eriksson, Fredrik, 1 ... (5)
Alling, Björn, 1980- (4)
Schmidt, Susann, Dr. (3)
Primetzhofer, Daniel (2)
Palisaitis, Justinas ... (2)
Ahlgren, M. (2)
Ahlgren, Mats (2)
Gothelid, Emmanuelle (2)
Li, J. (1)
Lu, Jun (1)
Nilsson, Mats (1)
Thuvander, Mattias, ... (1)
Stüber, Michael (1)
Chirita, Valeriu, 19 ... (1)
Huang, Ping (1)
Schmidt, Susann (1)
Kubart, Tomas, Dr. (1)
Högberg, Hans (1)
Odén, Magnus, 1965- (1)
Elenius, Lars, Profe ... (1)
Sangiovanni, Davide ... (1)
Broitman, Esteban, 1 ... (1)
Chen, Ke (1)
Odén, Magnus, Profes ... (1)
Ektarawong, Annop (1)
Dahlqvist, Martin, 1 ... (1)
Rosén, Johanna, Prof ... (1)
Lai, Chung-Chuan (1)
Persson, Per O. Å., ... (1)
Rosén, Johanna, 1975 ... (1)
Petrov, Ivan, 1949- (1)
Greene, Joseph E., 1 ... (1)
Engberg, David (1)
Bakoglidis, Konstant ... (1)
Bakoglidis, Konstant ... (1)
Greczynski, Grzegorz ... (1)
Broitman, Esteban, P ... (1)
Greczynski, Grzegorz ... (1)
Gulbinski, Witold, P ... (1)
Odén, Magnus, Profes ... (1)
Schell, Norbert (1)
Gothelid, E (1)
Göthelid, Emmanuelle (1)
Ghafoor, Naureen, 19 ... (1)
visa färre...
Lärosäte
Linköpings universitet (39)
Uppsala universitet (2)
Luleå tekniska universitet (1)
Örebro universitet (1)
Chalmers tekniska högskola (1)
Karlstads universitet (1)
Språk
Engelska (40)
Svenska (1)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (36)
Teknik (9)
Samhällsvetenskap (1)
Humaniora (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy