SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huseby Douglas L.) srt2:(2020)"

Sökning: WFRF:(Huseby Douglas L.) > (2020)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Garoff, Linnéa, et al. (författare)
  • Population Bottlenecks Strongly Influence the Evolutionary Trajectory to Fluoroquinolone Resistance in Escherichia coli
  • 2020
  • Ingår i: Molecular biology and evolution. - : Oxford University Press (OUP). - 0737-4038 .- 1537-1719. ; 37:6, s. 1637-1646
  • Tidskriftsartikel (refereegranskat)abstract
    • Experimental evolution is a powerful tool to study genetic trajectories to antibiotic resistance under selection. A confounding factor is that outcomes may be heavily influenced by the choice of experimental parameters. For practical purposes (minimizing culture volumes), most experimental evolution studies with bacteria use transmission bottleneck sizes of 5 x 10(6) cfu. We currently have a poor understanding of how the choice of transmission bottleneck size affects the accumulation of deleterious versus high-fitness mutations when resistance requires multiple mutations, and how this relates outcome to clinical resistance. We addressed this using experimental evolution of resistance to ciprofloxacin in Escherichia coli. Populations were passaged with three different transmission bottlenecks, including single cell (to maximize genetic drift) and bottlenecks spanning the reciprocal of the frequency of drug target mutations (10(8) and 10(10)). The 10(10) bottlenecks selected overwhelmingly mutations in drug target genes, and the resulting genotypes corresponded closely to those found in resistant clinical isolates. In contrast, both the 10(8) and single-cell bottlenecks selected mutations in three different gene classes: 1) drug targets, 2) efflux pump repressors, and 3) transcription-translation genes, including many mutations with low fitness. Accordingly, bottlenecks smaller than the average nucleotide substitution rate significantly altered the experimental outcome away from genotypes observed in resistant clinical isolates. These data could be applied in designing experimental evolution studies to increase their predictive power and to explore the interplay between different environmental conditions, where transmission bottlenecks might vary, and resulting evolutionary trajectories.
  •  
2.
  • Huseby, Douglas L, et al. (författare)
  • Antibiotic resistance by high-level intrinsic suppression of a frameshift mutation in an essential gene
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : NATL ACAD SCIENCES. - 0027-8424 .- 1091-6490. ; 117:6, s. 3185-3191
  • Tidskriftsartikel (refereegranskat)abstract
    • A fundamental feature of life is that ribosomes read the genetic code in messenger RNA (mRNA) as triplets of nucleotides in a single reading frame. Mutations that shift the reading frame generally cause gene inactivation and in essential genes cause loss of viability. Here we report and characterize a +1-nt frameshift mutation, centrally located in rpoB, an essential gene encoding the beta-subunit of RNA polymerase. Mutant Escherichia coli carrying this mutation are viable and highly resistant to rifampicin. Genetic and proteomic experiments reveal a very high rate (5%) of spontaneous frameshift suppression occurring on a heptanucleotide sequence downstream of the mutation. Production of active protein is stimulated to 61-71% of wild-type level by a feedback mechanism increasing translation initiation. The phenomenon described here could have broad significance for predictions of phenotype from genotype. Several frameshift mutations have been reported in rpoB in rifampicin-resistant clinical isolates of Mycobacterium tuberculosis (Mtb). These mutations have never been experimentally validated, and no mechanisms of action have been proposed. This work shows that frameshift mutations in rpoB can be a mutational mechanism generating antibiotic resistance. Our analysis further suggests that genetic elements supporting productive frame-shifting could rapidly evolve de novo, even in essential genes.
  •  
3.
  • Loza, Einars, et al. (författare)
  • Structure-activity relationship studies on the inhibition of the bacterial translation of novel Odilorhabdins analogues
  • 2020
  • Ingår i: Bioorganic & Medicinal Chemistry. - : PERGAMON-ELSEVIER SCIENCE LTD. - 0968-0896 .- 1464-3391. ; 28:11
  • Tidskriftsartikel (refereegranskat)abstract
    • A structure-activity relationship (SAR) study of NOSO-95179, a nonapeptide from the Odilorhabdin class of antibacterials, was performed by systematic variations of amino acids in positions 2 and 5 of the peptide. A series of non-proteinogenic amino acids was synthesized in high enantiomeric purity from Williams' chiral diphenyloxazinone by highly diastereoselective alkylation or by aldol-type reaction. NOSO-95179 analogues for SAR studies were prepared using solid-phase peptide synthesis. Inhibition of bacterial translation by each of the synthesized Odilorhabdin analogues was measured using an in vitro test. For the most efficient analogues, antibacterial efficacy was measured against two wild-type Enterobacteriaceae (Escherichia coli and Klebsiella pneumoniae) and against an efflux defective E. coli strain (Delta tolC) to evaluate the impact of efflux on the antibacterial activity.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy