SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Huttunen J) srt2:(2020-2023)"

Sökning: WFRF:(Huttunen J) > (2020-2023)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bonomi, A, et al. (författare)
  • Analysis of the genetic variants associated with circulating levels of sgp130. Results from the IMPROVE study
  • 2020
  • Ingår i: Genes and immunity. - : Springer Science and Business Media LLC. - 1476-5470 .- 1466-4879. ; 21:2, s. 100-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The genes regulating circulating levels of soluble gp130 (sgp130), the antagonist of the inflammatory response in atherosclerosis driven by interleukin 6, are largely unknown. Aims of the present study were to identify genetic loci associated with circulating sgp130 and to explore the potential association between variants associated with sgp130 and markers of subclinical atherosclerosis. The study is based on IMPROVE (n = 3703), a cardiovascular multicentre study designed to investigate the determinants of carotid intima media thickness, a measure of subclinical atherosclerosis. Genomic DNA was genotyped by the CardioMetaboChip and ImmunoChip. About 360,842 SNPs were tested for association with log-transformed sgp130, using linear regression adjusted for age, gender, and population stratification using PLINK v1.07. A p value of 1 × 10−5 was chosen as threshold for significance value. In an exploratory analysis, SNPs associated with sgp130 were tested for association with c-IMT measures. We identified two SNPs significantly associated with sgp130 levels and 24 showing suggestive association with sgp130 levels. One SNP (rs17688225) on chromosome 14 was positively associated with sgp130 serum levels (β = 0.03 SE = 0.007, p = 4.77 × 10−5) and inversely associated with c-IMT (c-IMTmean–maxβ = −0.001 SE = 0.005, p = 0.0342). Our data indicate that multiple loci regulate sgp130 levels and suggest a possible common pathway between sgp130 and c-IMT measures.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  •  
6.
  • Barker, Roger A., et al. (författare)
  • GDNF and Parkinson's Disease : Where Next? A Summary from a Recent Workshop
  • 2020
  • Ingår i: Journal of Parkinson's Disease. - 1877-7171. ; 10:3, s. 875-891
  • Tidskriftsartikel (refereegranskat)abstract
    • The concept of repairing the brain with growth factors has been pursued for many years in a variety of neurodegenerative diseases including primarily Parkinson's disease (PD) using glial cell line-derived neurotrophic factor (GDNF). This neurotrophic factor was discovered in 1993 and shown to have selective effects on promoting survival and regeneration of certain populations of neurons including the dopaminergic nigrostriatal pathway. These observations led to a series of clinical trials in PD patients including using infusions or gene delivery of GDNF or the related growth factor, neurturin (NRTN). Initial studies, some of which were open label, suggested that this approach could be of value in PD when the agent was injected into the putamen rather than the cerebral ventricles. In subsequent double-blind, placebo-controlled trials, the most recent reporting in 2019, treatment with GDNF did not achieve its primary end point. As a result, there has been uncertainty as to whether GDNF (and by extrapolation, related GDNF family neurotrophic factors) has merit in the future treatment of PD. To critically appraise the existing work and its future, a special workshop was held to discuss and debate this issue. This paper is a summary of that meeting with recommendations on whether there is a future for this therapeutic approach and also what any future PD trial involving GDNF and other GDNF family neurotrophic factors should consider in its design.
  •  
7.
  • Huttunen, Henri J., et al. (författare)
  • Intraputamenal Cerebral Dopamine Neurotrophic Factor in Parkinson's Disease: A Randomized, Double-Blind, Multicenter Phase 1 Trial
  • 2023
  • Ingår i: Movement Disorders. - : John Wiley & Sons. - 0885-3185 .- 1531-8257. ; 38:7, s. 1209-1222
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Cerebral dopamine neurotrophic factor (CDNF) is an unconventional neurotrophic factor that protects dopamine neurons and improves motor function in animal models of Parkinson's disease (PD). Objective: The primary objectives of this study were to assess the safety and tolerability of both CDNF and the drug delivery system (DDS) in patients with PD of moderate severity. Methods: We assessed the safety and tolerability of monthly intraputamenal CDNF infusions in patients with PD using an investigational DDS, a bone-anchored transcutaneous port connected to four catheters. This phase 1 trial was divided into a placebo-controlled, double-blind, 6-month main study followed by an active-treatment 6-month extension. Eligible patients, aged 35 to 75 years, had moderate idiopathic PD for 5 to 15 years and Hoehn and Yahr score ≤ 3 (off state). Seventeen patients were randomized to placebo (n = 6), 0.4 mg CDNF (n = 6), or 1.2 mg CDNF (n = 5). The primary endpoints were safety and tolerability of CDNF and DDS and catheter implantation accuracy. Secondary endpoints were measures of PD symptoms, including Unified Parkinson's Disease Rating Scale, and DDS patency and port stability. Exploratory endpoints included motor symptom assessment (PKG, Global Kinetics Pty Ltd, Melbourne, Australia) and positron emission tomography using dopamine transporter radioligand [18F]FE-PE2I. Results: Drug-related adverse events were mild to moderate with no difference between placebo and treatment groups. No severe adverse events were associated with the drug, and device delivery accuracy met specification. The severe adverse events recorded were associated with the infusion procedure and did not reoccur after procedural modification. There were no significant changes between placebo and CDNF treatment groups in secondary endpoints between baseline and the end of the main and extension studies. Conclusions: Intraputamenally administered CDNF was safe and well tolerated, and possible signs of biological response to the drug were observed in individual patients. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
  •  
8.
  • Jalkanen, Pinja, et al. (författare)
  • A Combination of N and S Antigens With IgA and IgG Measurement Strengthens the Accuracy of SARS-CoV-2 Serodiagnostics
  • 2021
  • Ingår i: Journal of Infectious Diseases. - : Oxford University Press. - 0022-1899 .- 1537-6613. ; 224:2, s. 218-228
  • Tidskriftsartikel (refereegranskat)abstract
    • Background. Primary diagnosis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is based on detection of virus RNA in nasopharyngeal swab samples. In addition, analysis of humoral immunity against SARS-CoV-2 has an important role in viral diagnostics and seroprevalence estimates. Methods. We developed and optimized an enzyme immunoassays (EIA) using SARS-CoV-2 nucleoprotein (N), Si and receptor binding domain (RBD) of the viral spike protein, and N proteins from SARS, Middle East respiratory syndrome (MERS), and 4 low-pathogenic human CoVs. Neutralizing antibody activity was compared with SARS-CoV-2 IgG, IgA, and IgM EIA results. Results. The sensitivity of EIA for detecting immune response in COVID-19 patients (n = 101) was 77% in the acute phase and 100% in the convalescent phase of SARS-CoV-2 infection when N and RBD were used as antigens in IgG and IgA specific EIAs. SARS-CoV-2 infection significantly increased humoral immune responses against the 229E and NL63 N proteins. Si and RBD-based EIA results had a strong correlation with microneutralization test results. Conclusions. The data indicate a combination of SARS-CoV-2 Si or RBD and N proteins and analysis of IgG and IgA immunoglobulin classes in sera provide an excellent basis for specific and sensitive serological diagnostics of COVID-19.
  •  
9.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy