SwePub
Tyck till om SwePub Sök här!
Sök i LIBRIS databas

  Utökad sökning

WFRF:(Iantchenko A.)
 

Sökning: WFRF:(Iantchenko A.) > (2017) > Fundamental physics...

Fundamental physics of the fast ion stabilization of electromagnetic ITG turbulence

Wilkie, George, 1983 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Iantchenko, A (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Hood Highcock, Edmund, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa fler...
Pusztai, Istvan, 1983 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Abel, Ian, 1985 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
Fülöp, Tünde, 1970 (författare)
Chalmers tekniska högskola,Chalmers University of Technology
visa färre...
 (creator_code:org_t)
2017
2017
Engelska.
Ingår i: 44th EPS Conference on Plasma Physics, EPS 2017.
  • Konferensbidrag (refereegranskat)
Abstract Ämnesord
Stäng  
  • In recent years, it has been observed that both electromagnetic effects and fast particle populations suppress transport from ITG turbulence. This effect was discovered via detailed numerical simulations of JET discharges. Further work has investigated these effects in the context of experimental scenarios, but the underlying physics remains somewhat unresolved. However, in pursuit of increased performance, experiments will continue to push to ever-higher beta. Similarly, burning plasmas will always have self-generated fast ion populations. Thus, understanding the physics behind this suppression is key to projecting its importance for future devices. Our analysis of the physical mechanisms comprises two parts: a study of the linear physics, and targeted nonlinear simulations. Firstly, an in-depth study of the linear physics is performed to disentangle the competing effects upon the ITG mode. These effects include dilution of the main ions by fast ions, changes to the magnetic equilibrium, and changes to the pressure gradients in the plasma. To clarify these results we derive a simplified dispersion relation for electromagnetic ITG including a fast ion population, and use it to demonstrate which parameters dominate the linear physics. Guided by our linear results, we use nonlinear simulations to examine the structure of the turbulence when stabilized by fast ions. Through this study, we show which effects lead to a reduction of stiffness, and why. We also explore which effects lead to changes in the nonlinear upshift of the critical temperature gradient. We enumerate which of these physical mechanisms contribute to the experimentally-observed reduction in heat flux. Given this physical understanding, we identify which class of fast ions contribute most beneficially to this reduction and the conditions under which the electromagnetic stabilization is most effective. We conclude by extrapolating these results towards ITER and DEMO.

Ämnesord

NATURVETENSKAP  -- Fysik -- Fusion, plasma och rymdfysik (hsv//swe)
NATURAL SCIENCES  -- Physical Sciences -- Fusion, Plasma and Space Physics (hsv//eng)

Publikations- och innehållstyp

kon (ämneskategori)
ref (ämneskategori)

Till lärosätets databas

Hitta mer i SwePub

Av författaren/redakt...
Wilkie, George, ...
Iantchenko, A
Hood Highcock, E ...
Pusztai, Istvan, ...
Abel, Ian, 1985
Fülöp, Tünde, 19 ...
Om ämnet
NATURVETENSKAP
NATURVETENSKAP
och Fysik
och Fusion plasma oc ...
Artiklar i publikationen
Av lärosätet
Chalmers tekniska högskola

Sök utanför SwePub

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy