SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Ibberson M.) "

Sökning: WFRF:(Ibberson M.)

  • Resultat 1-10 av 13
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Gloyn, A. L., et al. (författare)
  • Every islet matters: improving the impact of human islet research
  • 2022
  • Ingår i: Nature Metabolism. - : Springer Science and Business Media LLC. - 2522-5812. ; 4, s. 970-977
  • Tidskriftsartikel (refereegranskat)abstract
    • The authors of this Perspective summarize the state of human islet research and compare available islet procurement methods, proposing strategies to increase collaboration and standardization to accelerate discoveries on diabetes. Detailed characterization of human pancreatic islets is key to elucidating the pathophysiology of all forms of diabetes, especially type 2 diabetes. However, access to human pancreatic islets is limited. Pancreatic tissue for islet retrieval can be obtained from brain-dead organ donors or from individuals undergoing pancreatectomy, often referred to as 'living donors'. Different protocols for human islet procurement can substantially impact islet function. This variability, coupled with heterogeneity between individuals and islets, results in analytical challenges to separate genuine disease pathology or differences between human donors from experimental noise. There are currently no international guidelines for human donor phenotyping, islet procurement and functional characterization. This lack of standardization means that substantial investments from multiple international efforts towards improved understanding of diabetes pathology cannot be fully leveraged. In this Perspective, we overview the status of the field of human islet research, highlight the challenges and propose actions that could accelerate research progress and increase understanding of type 2 diabetes to slow its pandemic spreading.
  •  
6.
  • Asplund, Olof, et al. (författare)
  • Islet Gene View-a tool to facilitate islet research
  • 2022
  • Ingår i: Life Science Alliance. - : Life Science Alliance, LLC. - 2575-1077. ; 5:12
  • Tidskriftsartikel (refereegranskat)abstract
    • Characterization of gene expression in pancreatic islets and its alteration in type 2 diabetes (T2D) are vital in understanding islet function and T2D pathogenesis. We leveraged RNA sequencing and genome-wide genotyping in islets from 188 donors to create the Islet Gene View (IGW) platform to make this information easily accessible to the scientific community. Expression data were related to islet phenotypes, diabetes status, other islet-expressed genes, islet hormone-encoding genes and for expression in insulin target tissues. The IGW web application produces output graphs for a particular gene of interest. In IGW, 284 differentially expressed genes (DEGs) were identified in T2D donor islets compared with controls. Forty percent of DEGs showed cell-type enrichment and a large proportion significantly co-expressed with islet hormone-encoding genes; glucagon (GCG, 56%), amylin (IAPP, 52%), insulin (INS, 44%), and somatostatin (SST, 24%). Inhibition of two DEGs, UNC5D and SERPINE2, impaired glucose-stimulated insulin secretion and impacted cell survival in a human beta-cell model. The exploratory use of IGW could help designing more comprehensive functional follow-up studies and serve to identify therapeutic targets in T2D.
  •  
7.
  • Delfin, Carl, et al. (författare)
  • A Federated Database for Obesity Research : An IMI-SOPHIA Study
  • 2024
  • Ingår i: Life. - 0024-3019. ; 14:2
  • Tidskriftsartikel (refereegranskat)abstract
    • Obesity is considered by many as a lifestyle choice rather than a chronic progressive disease. The Innovative Medicines Initiative (IMI) SOPHIA (Stratification of Obesity Phenotypes to Optimize Future Obesity Therapy) project is part of a momentum shift aiming to provide better tools for the stratification of people with obesity according to disease risk and treatment response. One of the challenges to achieving these goals is that many clinical cohorts are siloed, limiting the potential of combined data for biomarker discovery. In SOPHIA, we have addressed this challenge by setting up a federated database building on open-source DataSHIELD technology. The database currently federates 16 cohorts that are accessible via a central gateway. The database is multi-modal, including research studies, clinical trials, and routine health data, and is accessed using the R statistical programming environment where statistical and machine learning analyses can be performed at a distance without any disclosure of patient-level data. We demonstrate the use of the database by providing a proof-of-concept analysis, performing a federated linear model of BMI and systolic blood pressure, pooling all data from 16 studies virtually without any analyst seeing individual patient-level data. This analysis provided similar point estimates compared to a meta-analysis of the 16 individual studies. Our approach provides a benchmark for reproducible, safe federated analyses across multiple study types provided by multiple stakeholders.
  •  
8.
  • Gurke, Robert, et al. (författare)
  • Omics and Multi-Omics Analysis for the Early Identification and Improved Outcome of Patients with Psoriatic Arthritis
  • 2022
  • Ingår i: Biomedicines. - : MDPI AG. - 2227-9059. ; 10:10
  • Forskningsöversikt (refereegranskat)abstract
    • The definitive diagnosis and early treatment of many immune-mediated inflammatory diseases (IMIDs) is hindered by variable and overlapping clinical manifestations. Psoriatic arthritis (PsA), which develops in similar to 30% of people with psoriasis, is a key example. This mixed-pattern IMID is apparent in entheseal and synovial musculoskeletal structures, but a definitive diagnosis often can only be made by clinical experts or when an extensive progressive disease state is apparent. As with other IMIDs, the detection of multimodal molecular biomarkers offers some hope for the early diagnosis of PsA and the initiation of effective management and treatment strategies. However, specific biomarkers are not yet available for PsA. The assessment of new markers by genomic and epigenomic profiling, or the analysis of blood and synovial fluid/tissue samples using proteomics, metabolomics and lipidomics, provides hope that complex molecular biomarker profiles could be developed to diagnose PsA. Importantly, the integration of these markers with high-throughput histology, imaging and standardized clinical assessment data provides an important opportunity to develop molecular profiles that could improve the diagnosis of PsA, predict its occurrence in cohorts of individuals with psoriasis, differentiate PsA from other IMIDs, and improve therapeutic responses. In this review, we consider the technologies that are currently deployed in the EU IMI2 project HIPPOCRATES to define biomarker profiles specific for PsA and discuss the advantages of combining multi-omics data to improve the outcome of PsA patients.
  •  
9.
  • Slieker, Roderick C, et al. (författare)
  • Identification of biomarkers for glycaemic deterioration in type 2 diabetes
  • 2023
  • Ingår i: Nature Communications. - 2041-1723. ; 14, s. 1-18
  • Tidskriftsartikel (refereegranskat)abstract
    • We identify biomarkers for disease progression in three type 2 diabetes cohorts encompassing 2,973 individuals across three molecular classes, metabolites, lipids and proteins. Homocitrulline, isoleucine and 2-aminoadipic acid, eight triacylglycerol species, and lowered sphingomyelin 42:2;2 levels are predictive of faster progression towards insulin requirement. Of ~1,300 proteins examined in two cohorts, levels of GDF15/MIC-1, IL-18Ra, CRELD1, NogoR, FAS, and ENPP7 are associated with faster progression, whilst SMAC/DIABLO, SPOCK1 and HEMK2 predict lower progression rates. In an external replication, proteins and lipids are associated with diabetes incidence and prevalence. NogoR/RTN4R injection improved glucose tolerance in high fat-fed male mice but impaired it in male db/db mice. High NogoR levels led to islet cell apoptosis, and IL-18R antagonised inflammatory IL-18 signalling towards nuclear factor kappa-B in vitro. This comprehensive, multi-disciplinary approach thus identifies biomarkers with potential prognostic utility, provides evidence for possible disease mechanisms, and identifies potential therapeutic avenues to slow diabetes progression.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 13

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy