SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Idevall Hagren Olof 1980 ) srt2:(2010-2014)"

Sökning: WFRF:(Idevall Hagren Olof 1980 ) > (2010-2014)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Idevall Hagren, Olof, 1980-, et al. (författare)
  • cAMP Mediators of Pulsatile Insulin Secretion from Glucose-stimulated Single β-Cells
  • 2010
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 285:30, s. 23005-23016
  • Tidskriftsartikel (refereegranskat)abstract
    • Pulsatile insulin release from glucose-stimulated beta-cells is driven by oscillations of the Ca2+ and cAMP concentrations in the subplasma membrane space ([Ca2+](pm) and [cAMP](pm)). To clarify mechanisms by which cAMP regulates insulin secretion, we performed parallel evanescent wave fluorescence imaging of [cAMP](pm), [Ca2+](pm), and phosphatidylinositol 3,4,5-trisphosphate (PIP3) in the plasma membrane. This lipid is formed by autocrine insulin receptor activation and was used to monitor insulin release kinetics from single MIN6 beta-cells. Elevation of the glucose concentration from 3 to 11 mM induced, after a 2.7-min delay, coordinated oscillations of [Ca2+](pm), [cAMP](pm), and PIP3. Inhibitors of protein kinase A (PKA) markedly diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The reduced PIP3 response could be attributed to accelerated depolarization causing early rise of [Ca2+](pm) that preceded the elevation of [cAMP](pm). However, the amplitude of the PIP3 response after PKA inhibition was restored by a specific agonist to the cAMP-dependent guanine nucleotide exchange factor Epac. Suppression of cAMP formation with adenylyl cyclase inhibitors reduced already established PIP3 oscillations in glucose-stimulated cells, and this effect was almost completely counteracted by the Epac agonist. In cells treated with small interfering RNA targeting Epac2, the amplitudes of the glucose-induced PIP3 oscillations were reduced, and the Epac agonist was without effect. The data indicate that temporal coordination of the triggering [Ca2+](pm) and amplifying [cAMP](pm) signals is important for glucose-induced pulsatile insulin release. Although both PKA and Epac2 partake in initiating insulin secretion, the cAMP dependence of established pulsatility is mediated by Epac2.
  •  
2.
  • Idevall Hagren, Olof, 1980- (författare)
  • Oscillatory Signaling and Insulin Secretion from Single ß-cells
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • cAMP and Ca2+ are key regulators of exocytosis in many cells, including insulin-secreting pancreatic β-cells. Glucose-stimulated insulin secretion from β-cells is pulsatile and driven by oscillations of the cytoplasmic Ca2+ concentration ([Ca2+]i), but little is known about the kinetics of cAMP signaling and the mechanisms of cAMP action. Evanescent wave microscopy and fluorescent translocation biosensors were used to monitor plasma membrane-related signaling events in single MIN6-cells and primary mouse β-cells. Glucose stimulation of insulin secretion resulted in pronounced oscillations of the membrane phospholipid PIP3 caused by autocrine activation of insulin receptors. Glucose also triggered oscillations of the sub-plasma membrane cAMP concentration ([cAMP]pm). These oscillations were preceded and enhanced by elevations of [Ca2+]i, but conditions raising cytoplasmic ATP triggered [cAMP]pm elevations without accompanying changes in [Ca2+]i. The [cAMP]pm oscillations were also synchronized with PIP3 oscillations and both signals were suppressed after inhibition of adenylyl cyclases. Protein kinase A (PKA) was important for promoting concomitant initial elevations of [cAMP]pm and [Ca2+]i, and PKA inhibitors diminished the PIP3 response when applied before glucose stimulation, but did not affect already manifested PIP3 oscillations. The glucose-induced PIP3 oscillations were markedly suppressed in cells treated with siRNA against the cAMP-dependent guanine nucleotide exchange factor Epac2. Pharmacological activation of Epac restored PIP3 responses after adenylyl cyclase or PKA inhibition. Glucose and other cAMP-elevating stimuli induced redistribution of fluorescence-tagged Epac2 from the cytoplasm to the plasma membrane. This translocation was modulated by [Ca2+]i and depended on intact cyclic nucleotide-binding and Ras-association domains. In conclusion, glucose generates cAMP oscillations in β-cells via a concerted action of Ca2+ and metabolically generated ATP. The oscillations are important for the magnitude and kinetics of insulin secretion. While both protein kinase A and Epac is required for initiation of insulin secretion the cAMP-dependence of established pulsatility is mediated by Epac2.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy