SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Immler Simone) srt2:(2020-2024)"

Sökning: WFRF:(Immler Simone) > (2020-2024)

  • Resultat 1-10 av 11
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Baur, Julian (författare)
  • Condition dependent germline maintenance in seed beetles
  • 2022
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The aim of the work presented in this thesis is to investigate how costly adaptations promoted by sexual selection affect fertility and offspring quality through changes in germline maintenance. Germline maintenance, comprising mechanisms maintaining DNA-integrity and homeostasis within germ cells, is known to be costly and, therefore, may trade-off with other costly reproductive traits that are under sexual selection. However, sexual selection may also act on condition dependent traits that reflect the overall genetic quality of its bearer, in which case sexual selection for high quality mates may lead to improved germline maintenance. Using experimental evolution lines of the seed beetle Callosobruchus maculatus, evolving under three different mating regimes that manipulated the opportunity for sexual and natural selection, I show evidence indicating that sexual selection can lead to improved germline maintenance through selection on condition dependent traits. However, I also found evidence for the alternative hypothesis, suggesting that when sexual selection is much stronger than natural selection it may lead to excessive investment into mating traits that trade-off with and reduce germline maintenance. We present an RNA expression analysis suggesting 18 candidate genes responding to DNA-damage and sociosexual interactions that may be involved in trade-offs between sexual selection and germline maintenance. I also found that the fertility of males and females that evolved under intense sexual selection was more sensitive to heat stress, and male sensitivity of fertility to heat stress was genetically correlated to sperm competitive ability. This suggests a trade-off between male postcopulatory reproductive success and the thermal sensitivity of fertility. The increased sensitivity to heat was also reflected in the fertility of females, suggesting that female heat tolerance may have evolved via genetic correlations with sexually selected male reproductive traits. The work presented in this thesis shows that sexual selection indeed affects germline maintenance. Sexual selection can increase germline maintenance through selection on condition dependent traits. But at the same time, traits under sexual selection can trade off with aspects of germline maintenance. If traits evolved under sexual selection and only weak constraints by natural selection, evolved allocation shifts in response to sexual selection can lead to deleterious repercussions when stressful environmental conditions increase demands on germline maintenance. The results presented in this thesis highlight important aspects of how sexual selection affects condition dependent germline maintenance with significant implications for the maintenance of genetic variation, adaptive processes, and mate choice processes in species under sexual selection.
  •  
2.
  • Bergero, Roberta, et al. (författare)
  • Meiosis and beyond - understanding the mechanistic and evolutionary processes shaping the germline genome
  • 2021
  • Ingår i: Biological Reviews. - : John Wiley & Sons. - 1464-7931 .- 1469-185X. ; 96:3, s. 822-841
  • Forskningsöversikt (refereegranskat)abstract
    • The separation of germ cell populations from the soma is part of the evolutionary transition to multicellularity. Only genetic information present in the germ cells will be inherited by future generations, and any molecular processes affecting the germline genome are therefore likely to be passed on. Despite its prevalence across taxonomic kingdoms, we are only starting to understand details of the underlying micro-evolutionary processes occurring at the germline genome level. These include segregation, recombination, mutation and selection and can occur at any stage during germline differentiation and mitotic germline proliferation to meiosis and post-meiotic gamete maturation. Selection acting on germ cells at any stage from the diploid germ cell to the haploid gametes may cause significant deviations from Mendelian inheritance and may be more widespread than previously assumed. The mechanisms that affect and potentially alter the genomic sequence and allele frequencies in the germline are pivotal to our understanding of heritability. With the rise of new sequencing technologies, we are now able to address some of these unanswered questions. In this review, we comment on the most recent developments in this field and identify current gaps in our knowledge.
  •  
3.
  • Chen, Hwei-yen, 1983-, et al. (författare)
  • Germline mutation rate is elevated in young and old parents in Caenorhabditis remanei
  • 2023
  • Ingår i: Evolution Letters. - : Oxford University Press. - 2056-3744. ; 7:6, s. 478-489
  • Tidskriftsartikel (refereegranskat)abstract
    • The effect of parental age on germline mutation rate across generations is not fully understood. While some studies report a positive linear relationship of mutation rate with increasing age, others suggest that mutation rate varies with age but not in a linear fashion. We investigated the effect of parental age on germline mutations by generating replicated mutation accumulation lines in Caenorhabditis remanei at three parental ages ("Young T1" [Day 1], "Peak T2" [Day 2], and "Old T5" [Day 5] parents). We conducted whole-genome resequencing and variant calling to compare differences in mutation rates after three generations of mutation accumulation. We found that Peak T2 lines had an overall reduced mutation rate compared to Young T1 and Old T5 lines, but this pattern of the effect varied depending on the variant impact. Specifically, we found no high-impact variants in Peak T2 lines, and modifiers and up- and downstream gene variants were less frequent in these lines. These results suggest that animals at the peak of reproduction have better DNA maintenance and repair compared to young and old animals. We propose that C. remanei start to reproduce before they optimize their DNA maintenance and repair, trading the benefits of earlier onset of reproduction against offspring mutation load. The increase in offspring mutation load with age likely represents germline senescence. Germline mutations play a key role in evolution through the generation of novel genotypes. Estimating the mutation rate in species, populations, and individuals is one way to understand the relative timeframe of evolutionary processes, for the timing of historical events and for estimating heritability of traits and diseases. Individual age at reproduction is known to affect the number of mutations being transferred into the next generation and generally mutation rate is thought to increase with increasing parental age. However, preventing mutations in germ cells is potentially costly and it may pay off to optimize germline genome repair and maintenance during peak reproductive periods, and relax it during nonpeak periods. This idea has been put forward to explain for example the reduction of gonad size in seasonally reproducing animals during nonreproductive periods and supported by the finding that the mutation rate seems to be higher in teenage men compared to men during their peak reproductive ages. We further tested this idea of a nonlinear relationship between age and mutation rate by performing a mutation accumulation experiment in a short-lived nematode. We kept experimental lines and allowed adults to reproduce at different ages in different lines, with some lines reproducing before, some during, and some after their reproductive peak. We found that mutation rates are higher in nematode lines reproducing before or after the reproductive peak compared to those reproducing during the peak. Our results therefore support the idea that germline genome maintenance and repair is potentially costly and that the mutation rate does not just increase with age but is optimized during the peak reproductive age of an organism.
  •  
4.
  • Chen, Hwei-yen, 1983-, et al. (författare)
  • Trade-off between somatic and germline repair in a vertebrate supports the expensive germ line hypothesis
  • 2020
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : Proceedings of the National Academy of Sciences (PNAS). - 0027-8424 .- 1091-6490. ; 117:16, s. 8973-8979
  • Tidskriftsartikel (refereegranskat)abstract
    • The disposable soma theory is a central tenet of the biology of aging where germline immortality comes at the cost of an aging soma [T. B. L. Kirkwood, Nature 270, 301–304 (1977); T. B. L. Kirkwood, Proc. R. Soc. Lond. B Biol. Sci. 205, 531–546 (1979); T. B. L. Kirkwood, S. N. Austad, Nature 408, 233–238 (2000)]. Limited resources and a possible trade-off between the repair and maintenance of the germ cells and growth and maintenance of the soma may explain the deterioration of the soma over time. Here we show that germline removal allows accelerated somatic healing under stress. We tested “the expensive germ line” hypothesis by generating germline-free zebrafish Danio rerio and testing the effect of the presence and absence of the germ line on somatic repair under benign and stressful conditions. We exposed male fish to sublethal low-dose ionizing radiation, a genotoxic stress affecting the soma and the germ line, and tested how fast the soma recovered following partial fin ablation. We found that somatic recovery from ablation occurred substantially faster in irradiated germline-free fish than in the control germline-carrying fish where somatic recovery was stunned. The germ line did show signs of postirradiation recovery in germline-carrying fish in several traits related to offspring number and fitness. These results support the theoretical conjecture that germline maintenance is costly and directly trades off with somatic maintenance.
  •  
5.
  • Hotzy, Cosima, et al. (författare)
  • Evolutionary history of sexual selection affects microRNA profiles in Drosophila sperm
  • 2022
  • Ingår i: Evolution. - : John Wiley & Sons. - 0014-3820 .- 1558-5646. ; 76:2, s. 310-319
  • Tidskriftsartikel (refereegranskat)abstract
    • The presence of small RNAs in sperm is a relatively recent discovery and little is currently known about their importance and functions. Environmental changes including social conditions and dietary manipulations are known to affect the composition and expression of some small RNAs in sperm and may elicit a physiological stress response resulting in an associated change in gamete miRNA profiles. Here, we tested how microRNA profiles in sperm are affected by variation in both sexual selection and dietary regimes in Drosophila melanogaster selection lines. The selection lines were exposed to standard versus low yeast diet treatments and three different population sex ratios (male-biased, female-biased, or equal sex) in a full-factorial design. After 38 generations of selection, all males were maintained on their selected diet and in a common garden male-only environment prior to sperm sampling. We performed transcriptome analyses on miRNAs in purified sperm samples. We found 11 differentially expressed miRNAs with the majority showing differences between male- and female-biased lines. Dietary treatment only had a significant effect on miRNA expression levels in interaction with sex ratio. Our findings suggest that long-term adaptation may affect miRNA profiles in sperm and that these may show varied interactions with short-term environmental changes.
  •  
6.
  • Hotzy, Cosima, et al. (författare)
  • Intrinsic post‐ejaculation sperm ageing does not affect offspring fitness in Atlantic salmon
  • 2020
  • Ingår i: Journal of Evolutionary Biology. - 1010-061X .- 1420-9101. ; 33:5, s. 576-583
  • Tidskriftsartikel (refereegranskat)abstract
    • Post-meiotic sperm ageing, both before ejaculation and after ejaculation, has been shown to negatively affect offspring fitness by lowering the rate of embryonic development, reducing embryonic viability and decreasing offspring condition. These negative effects are thought to be caused by intrinsic factors such as oxidative stress and ATP depletion or extrinsic factors such as temperature and osmosis. Effects of post-ejaculation sperm ageing on offspring fitness have so far almost exclusively been tested in internal fertilizers. Here, we tested whether intrinsic post-ejaculation sperm ageing affects offspring performance in an external fertilizer, the Atlantic salmon Salmo salar. We performed in vitro fertilizations with a split-clutch design where sperm were subjected to four post-ejaculation ageing treatments. We varied the duration between sperm activation and fertilization while minimizing extrinsic stress factors and tested how this affected offspring fitness. We found no evidence for an effect of our treatments on embryo survival, hatching time, larval standard length, early larval survival or larval growth rate, indicating that intrinsic post-ejaculation sperm ageing may not occur in Atlantic salmon. One reason may be the short life span of salmon sperm after ejaculation. Whether our findings are true in other external fertilizers with extended sperm activity remains to be tested.
  •  
7.
  • Jimenez-Gonzalez, Ada, et al. (författare)
  • Paternal starvation affects metabolic gene expression during zebrafish offspring development and lifelong fitness
  • 2024
  • Ingår i: Molecular Ecology. - : John Wiley & Sons. - 0962-1083 .- 1365-294X. ; 33:6
  • Tidskriftsartikel (refereegranskat)abstract
    • Dietary restriction in the form of fasting is a putative key to a healthier and longer life, but these benefits may come at a trade-off with reproductive fitness and may affect the following generation(s). The potential inter- and transgenerational effects of long-term fasting and starvation are particularly poorly understood in vertebrates when they originate from the paternal line. We utilised the externally fertilising zebrafish amenable to a split-egg clutch design to explore the male-specific effects of fasting/starvation on fertility and fitness of offspring independently of maternal contribution. Eighteen days of fasting resulted in reduced fertility in exposed males. While average offspring survival was not affected, we detected increased larval growth rate in F1 offspring from starved males and more malformed embryos at 24 h post-fertilisation in F2 offspring produced by F1 offspring from starved males. Comparing the transcriptomes of F1 embryos sired by starved and fed fathers revealed robust and reproducible increased expression of muscle composition genes but lower expression of lipid metabolism and lysosome genes in embryos from starved fathers. A large proportion of these genes showed enrichment in the yolk syncytial layer suggesting gene regulatory responses associated with metabolism of nutrients through paternal effects on extra-embryonic tissues which are loaded with maternal factors. We compared the embryo transcriptomes to published adult transcriptome datasets and found comparable repressive effects of starvation on metabolism-associated genes. These similarities suggest a physiologically relevant, directed and potentially adaptive response transmitted by the father, independently from the offspring's nutritional state, which was defined by the mother.
  •  
8.
  • Jiménez-Ortega, Dante, et al. (författare)
  • Long life evolves in large-brained bird lineages
  • 2020
  • Ingår i: Evolution. - : Wiley. - 0014-3820 .- 1558-5646. ; 74:12, s. 2617-2628
  • Tidskriftsartikel (refereegranskat)abstract
    • The brain is an energetically costly organ that consumes a disproportionate amount of resources. Species with larger brains relative to their body size have slower life histories, with reduced output per reproductive event and delayed development times that can be offset by increasing behavioral flexibility. The cognitive buffer hypothesis maintains that large brain size decreases extrinsic mortality due to greater behavioral flexibility, leading to a longer lifespan. Alternatively, slow life histories, and long lifespan can be a pre-adaptation for the evolution of larger brains. Here, we use phylogenetic path analysis to contrast different evolutionary scenarios and disentangle direct and indirect relationships between brain size, body size, life history, and longevity across 339 altricial and precocial bird species. Our results support both a direct causal link between brain size and lifespan, and an indirect effect via other life history traits. These results indicate that large brain size engenders longer life, as proposed by the cognitive buffer hypothesis.
  •  
9.
  • Sáez-Espinosa, Paula, et al. (författare)
  • Morphological and ultrastructural alterations of zebrafish (Danio rerio) spermatozoa after motility activation
  • 2022
  • Ingår i: Theriogenology. - : Elsevier BV. - 0093-691X. ; 188, s. 108-115
  • Tidskriftsartikel (refereegranskat)abstract
    • Spermatozoa motility in freshwater and marine fish is mainly controlled by the difference in osmotic pressure. Specifically, zebrafish (Danio rerio) spermatozoa undergo hypoosmotic shock due to the decrease in extracellular potassium, which leads to membrane hyperpolarization and activation of flagellar motility. Previous studies have concluded that motility activation has a negative effect on the spermatozoa structure. However, no evidence exists about ultrastructural changes in zebrafish spermatozoa after motility activation. In this study, spermatozoa samples were obtained from ten adult zebrafish individuals before and 60 s after motility activation and analyzed using Scanning and Transmission Electron Microscopy. Results showed dramatic morphological and ultrastructural alterations of the zebrafish spermatozoa after activation. In particular, the spermatozoa head underwent severe morphological distortion, including swelling of the nucleus, the bursting of the plasma membrane, and the alteration of the genetic material. Midpieces were also affected after activation since rupture of the cell membrane and lysis of mitochondria occurred. Furthermore, after the hypoosmotic shock, most spermatozoa showed a coiled flagellum and a disaggregated plasma membrane. Overall, our findings show that the activation of motility leads to substantial zebrafish spermatozoa morphological and ultrastructural changes, which could modify their physiology and decrease the fertilizing potential.
  •  
10.
  • Silva, Willian T. A. F., 1987-, et al. (författare)
  • Evolution of plasticity in production and transgenerational inheritance of small RNAs under dynamic environmental conditions
  • 2021
  • Ingår i: PLOS Genetics. - : Public Library of Science (PLoS). - 1553-7390 .- 1553-7404. ; 17:5
  • Tidskriftsartikel (refereegranskat)abstract
    • In a changing environment, small RNAs (sRNAs) play an important role in the post-transcriptional regulation of gene expression and can vary in abundance depending on the conditions experienced by an individual (phenotypic plasticity) and its parents (non-genetic inheritance). Many sRNAs are unusual in that they can be produced in two ways, either using genomic DNA as the template (primary sRNAs) or existing sRNAs as the template (secondary sRNAs). Thus, organisms can evolve rapid plastic responses to their current environment by adjusting the amplification rate of sRNA templates. sRNA levels can also be transmitted transgenerationally by the direct transfer of either sRNAs or the proteins involved in amplification. Theory is needed to describe the selective forces acting on sRNA levels, accounting for the dual nature of sRNAs as regulatory elements and templates for amplification and for the potential to transmit sRNAs and their amplification agents to offspring. Here, we develop a model to study the dynamics of sRNA production and inheritance in a fluctuating environment. We tested the selective advantage of mutants capable of sRNA-mediated phenotypic plasticity within resident populations with fixed levels of sRNA transcription. Even when the resident was allowed to evolve an optimal constant rate of sRNA production, plastic amplification rates capable of responding to environmental conditions were favored. Mechanisms allowing sRNA transcripts or amplification agents to be inherited were favored primarily when parents and offspring face similar environments and when selection acts before the optimal level of sRNA can be reached within the organism. Our study provides a clear set of testable predictions for the evolution of sRNA-related mechanisms of phenotypic plasticity and transgenerational inheritance.Author summarySmall RNAs (sRNA) are produced by a wide range of organisms, from bacteria to plants and animals. These molecules are involved in the response to environmental stress (e.g., temperature, pathogens) and can be transmitted across generations. We developed a model to explore the dynamics of sRNA production (phenotypic plasticity) and inheritance in a fluctuating environment. We tested whether different sRNA mutants can invade a population where individuals produce sRNA at a constant optimal transcription rate. In our simulations, plastic amplification rates capable of responding to environmental conditions were favored and the transmission of sRNA transcripts or amplification agents across generations was particularly advantageous when parents and offspring faced similar environments. sRNA amplification alone is not favored except when optimal sRNA levels are not reached within a generation. Our model provides novel predictions for the molecular mechanisms of sRNA production and guidance for future empirical studies on mutations that impair the mechanisms of sRNA production and their fitness consequences.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 11

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy