SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Itoh T.) srt2:(2000-2004)"

Sökning: WFRF:(Itoh T.) > (2000-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Imanishi, T., et al. (författare)
  • Integrative annotation of 21,037 human genes validated by full-length cDNA clones
  • 2004
  • Ingår i: PLoS biology. - : Public Library of Science (PLoS). - 1544-9173 .- 1545-7885. ; 2:6, s. 856-875
  • Tidskriftsartikel (refereegranskat)abstract
    • The human genome sequence defines our inherent biological potential; the realization of the biology encoded therein requires knowledge of the function of each gene. Currently, our knowledge in this area is still limited. Several lines of investigation have been used to elucidate the structure and function of the genes in the human genome. Even so, gene prediction remains a difficult task, as the varieties of transcripts of a gene may vary to a great extent. We thus performed an exhaustive integrative characterization of 41,118 full-length cDNAs that capture the gene transcripts as complete functional cassettes, providing an unequivocal report of structural and functional diversity at the gene level. Our international collaboration has validated 21,037 human gene candidates by analysis of high-quality full-length cDNA clones through curation using unified criteria. This led to the identification of 5,155 new gene candidates. It also manifested the most reliable way to control the quality of the cDNA clones. We have developed a human gene database, called the H-Invitational Database (H-InvDB; http://www.h-invitational.jp/). It provides the following: integrative annotation of human genes, description of gene structures, details of novel alternative splicing isoforms, non-protein-coding RNAs, functional domains, subcellular localizations, metabolic pathways, predictions of protein three-dimensional structure, mapping of known single nucleotide polymorphisms (SNPs), identification of polymorphic microsatellite repeats within human genes, and comparative results with mouse full-length cDNAs. The H-InvDB analysis has shown that up to 4% of the human genome sequence (National Center for Biotechnology Information build 34 assembly) may contain misassembled or missing regions. We found that 6.5% of the human gene candidates (1,377 loci) did not have a good protein-coding open reading frame, of which 296 loci are strong candidates for non-protein-coding RNA genes. In addition, among 72,027 uniquely mapped SNPs and insertions/deletions localized within human genes, 13,215 nonsynonymous SNPs, 315 nonsense SNPs, and 452 indels occurred in coding regions. Together with 25 polymorphic microsatellite repeats present in coding regions, they may alter protein structure, causing phenotypic effects or resulting in disease. The H-InvDB platform represents a substantial contribution to resources needed for the exploration of human biology and pathology.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Pardali, E, et al. (författare)
  • Smad and AML proteins synergistically confer transforming growth factor beta1 responsiveness to human germ-line IgA genes.
  • 2000
  • Ingår i: Journal of Biological Chemistry. - 0021-9258 .- 1083-351X. ; 275:5, s. 3552-60
  • Tidskriftsartikel (refereegranskat)abstract
    • Transcription of germ-line immunoglobulin heavy chain genes conditions them to participate in isotype switch recombination. Transforming growth factor-beta1 (TGF-beta1) stimulates promoter elements located upstream of the IgA1 and IgA2 switch regions, designated Ialpha1 and Ialpha2, and contributes to the development of IgA responses. We demonstrate that intracellular Smad proteins mediate activation of the Ialpha1 promoter by TGF-beta. TGF-beta type 1 receptor (ALK-5), activin type IB receptor (ALK-4), and the "orphan" ALK-7 trans-activate the Ialpha1 promoter, thus raising the possibility that other members of the TGF-beta superfamily can also modulate IgA synthesis. Smads physically interact with the AML family of transcription factors and cooperate with them to activate the Ialpha1 promoter. The Ialpha1 element provides a canapé of interspersed high and low affinity sites for Smad and AML factors, some of which are indispensable for TGF-beta responsiveness. While AML.Smad complexes are formed in the cytoplasm of DG75 and K562 cells constitutively, only after TGF-beta receptor activation, novel Smad3.Smad4.AML complexes are detected in nuclear extracts by EMSA with Ialpha1 promoter-derived probes. Considering the wide range of biological phenomena that AMLs and Smads regulate, the physical/functional interplay between them has implications that extend beyond the regulation of class switching to IgA.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy