SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jörntell Henrik) srt2:(2010-2014)"

Sökning: WFRF:(Jörntell Henrik) > (2010-2014)

  • Resultat 1-10 av 36
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Belmeguenai, Amor, et al. (författare)
  • Intrinsic Plasticity Complements Long-Term Potentiation in Parallel Fiber Input Gain Control in Cerebellar Purkinje Cells
  • 2010
  • Ingår i: The Journal of Neuroscience. - 1529-2401. ; 30:41, s. 13630-13643
  • Tidskriftsartikel (refereegranskat)abstract
    • Synaptic gain control and information storage in neural networks are mediated by alterations in synaptic transmission, such as in long-term potentiation (LTP). Here, we show using both in vitro and in vivo recordings from the rat cerebellum that tetanization protocols for the induction of LTP at parallel fiber (PF)-to-Purkinje cell synapses can also evoke increases in intrinsic excitability. This form of intrinsic plasticity shares with LTP a requirement for the activation of protein phosphatases 1, 2A, and 2B for induction. Purkinje cell intrinsic plasticity resembles CA1 hippocampal pyramidal cell intrinsic plasticity in that it requires activity of protein kinaseA (PKA) and case in kinase 2 (CK2) and is mediated by a downregulation of SK-type calcium-sensitive K conductances. In addition, Purkinje cell intrinsic plasticity similarly results in enhanced spine calcium signaling. However, there are fundamental differences: first, while in the hippocampus increases in excitability result in a higher probability for LTP induction, intrinsic plasticity in Purkinje cells lowers the probability for subsequent LTP induction. Second, intrinsic plasticity raises the spontaneous spike frequency of Purkinje cells. The latter effect does not impair tonic spike firing in the target neurons of inhibitory Purkinje cell projections in the deep cerebellar nuclei, but lowers the Purkinje cell signal-to-noise ratio, thus reducing the PF readout. These observations suggest that intrinsic plasticity accompanies LTP of active PF synapses, while it reduces at weaker, nonpotentiated synapses the probability for subsequent potentiation and lowers the impact on the Purkinje cell output.
  •  
2.
  • Bengtsson, Fredrik, et al. (författare)
  • Cross-correlations between pairs of neurons in cerebellar cortex in vivo.
  • 2013
  • Ingår i: Neural Networks. - : Elsevier BV. - 1879-2782 .- 0893-6080. ; 47:Dec.,06, s. 88-94
  • Tidskriftsartikel (refereegranskat)abstract
    • In the present paper we apply a new neurophysiological technique to make single-electrode, dual loose-patch recordings from pairs of neuronal elements in the cerebellar cortex in vivo. The analyzed cell pairs consisted of an inhibitory molecular layer interneuron and a Purkinje cell (PC) or a Golgi cell and a granule cell, respectively. To detect the magnitude of the unitary inhibitory synaptic inputs we used histograms of the spike activity of the target cell, triggered by the spikes of the inhibitory cell. Using this analysis, we found that single interneurons had no detectable effect on PC firing, which could be explained by an expected very low synaptic weight of individual interneuron-PC connections. However, interneurons did have a weak delaying effect on the overall series of interspike intervals of PCs. Due to the very high number of inhibitory synapses on each PC, a concerted activation of the interneurons could still achieve potent PC inhibition as previously shown. In contrast, in the histograms of the Golgi cell-granule cell pairs, we found a weak inhibitory effect on the granule cell but only at the time period defined as the temporal domain of the slow IPSP previously described for this connection. Surprisingly, the average granule cell firing frequency sampled at one second was strongly modulated with a negative correlation to the overall firing level of the Golgi cell when the latter was modified through current injection via the patch pipette. These findings are compatible with that tonic inhibition is the dominant form of Golgi cell-granule cell inhibition in the adult cerebellum in vivo.
  •  
3.
  • Bengtsson, Fredrik, et al. (författare)
  • In Vivo Analysis of Inhibitory Synaptic Inputs and Rebounds in Deep Cerebellar Nuclear Neurons
  • 2011
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 6:4
  • Tidskriftsartikel (refereegranskat)abstract
    • Neuronal function depends on the properties of the synaptic inputs the neuron receive and on its intrinsic responsive properties. However, the conditions for synaptic integration and activation of intrinsic responses may to a large extent depend on the level of background synaptic input. In this respect, the deep cerebellar nuclear (DCN) neurons are of particular interest: they feature a massive background synaptic input and an intrinsic, postinhibitory rebound depolarization with profound effects on the synaptic integration. Using in vivo whole cell patch clamp recordings from DCN cells in the cat, we find that the background of Purkinje cell input provides a tonic inhibitory synaptic noise in the DCN cell. Under these conditions, individual Purkinje cells appear to have a near negligible influence on the DCN cell and clear-cut rebounds are difficult to induce. Peripheral input that drives the simple spike output of the afferent PCs to the DCN cell generates a relatively strong DCN cell inhibition, but do not induce rebounds. In contrast, synchronized climbing fiber activation, which leads to a synchronized input from a large number of Purkinje cells, can induce profound rebound responses. In light of what is known about climbing fiber activation under behaviour, the present findings suggest that DCN cell rebound responses may be an unusual event. Our results also suggest that cortical modulation of DCN cell output require a substantial co-modulation of a large proportion of the PCs that innervate the cell, which is a possible rationale for the existence of the cerebellar microcomplex.
  •  
4.
  • Bengtsson, Fredrik, et al. (författare)
  • Integration of sensory quanta in cuneate nucleus neurons in vivo
  • 2013
  • Ingår i: PLOS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 8:2, s. e56630-
  • Tidskriftsartikel (refereegranskat)abstract
    • Discriminative touch relies on afferent information carried to the central nervous system by action potentials (spikes) in ensembles of primary afferents bundled in peripheral nerves. These sensory quanta are first processed by the cuneate nucleus before the afferent information is transmitted to brain networks serving specific perceptual and sensorimotor functions. Here we report data on the integration of primary afferent synaptic inputs obtained with in vivo whole cell patch clamp recordings from the neurons of this nucleus. We find that the synaptic integration in individual cuneate neurons is dominated by 4-8 primary afferent inputs with large synaptic weights. In a simulation we show that the arrangement with a low number of primary afferent inputs can maximize transfer over the cuneate nucleus of information encoded in the spatiotemporal patterns of spikes generated when a human fingertip contact objects. Hence, the observed distributions of synaptic weights support high fidelity transfer of signals from ensembles of tactile afferents. Various anatomical estimates suggest that a cuneate neuron may receive hundreds of primary afferents rather than 4-8. Therefore, we discuss the possibility that adaptation of synaptic weight distribution, possibly involving silent synapses, may function to maximize information transfer in somatosensory pathways.
  •  
5.
  • Bengtsson, Fredrik, et al. (författare)
  • Specific Relationship between Excitatory Inputs and Climbing Fiber Receptive Fields in Deep Cerebellar Nuclear Neurons.
  • 2014
  • Ingår i: PLoS ONE. - : Public Library of Science (PLoS). - 1932-6203. ; 9:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Many mossy fiber pathways to the neurons of the deep cerebellar nucleus (DCN) originate from the spinal motor circuitry. For cutaneously activated spinal neurons, the receptive field is a tag indicating the specific motor function the spinal neuron has. Similarly, the climbing fiber receptive field of the DCN neuron reflects the specific motor output function of the DCN neuron. To explore the relationship between the motor information the DCN neuron receives and the output it issues, we made patch clamp recordings of DCN cell responses to tactile skin stimulation in the forelimb region of the anterior interposed nucleus in vivo. The excitatory responses were organized according to a general principle, in which the DCN cell responses became stronger the closer the skin site was located to its climbing fiber receptive field. The findings represent a novel functional principle of cerebellar connectivity, with crucial importance for our understanding of the function of the cerebellum in movement coordination.
  •  
6.
  • Dean, Paul, et al. (författare)
  • An adaptive filter model of cerebellar zone C3 as a basis for safe limb control?
  • 2013
  • Ingår i: Journal of Physiology. - : Wiley. - 1469-7793 .- 0022-3751. ; 591:22, s. 5459-5474
  • Forskningsöversikt (refereegranskat)abstract
    • The review asks how the adaptive filter model of the cerebellum might be relevant to experimental work on zone C3, one of the most extensively studied regions of cerebellar cortex. As far as features of the cerebellar microcircuit are concerned, the model appears to fit very well with electrophysiological discoveries concerning the importance of molecular layer interneurons and their plasticity, the significance of long-term potentiation and the striking number of silent parallel fibre synapses. Regarding external connectivity and functionality, a key feature of the adaptive filter model is its use of the decorrelation algorithm, which renders it uniquely suited to problems of sensory noise cancellation. However, this capacity can be extended to the avoidance of sensory interference, by appropriate movements of, for example, the eyes in the vestibulo-ocular reflex. Avoidance becomes particularly important when painful signals are involved, and as the climbing fibre input to zone C3 is extremely responsive to nociceptive stimuli, it is proposed that one function of this zone is the avoidance of pain by, for example, adjusting movements of the body to avoid self-harm. This hypothesis appears consistent with evidence from humans and animals concerning the role of the intermediate cerebellum in classically conditioned withdrawal reflexes, but further experiments focusing on conditioned avoidance are required to test the hypothesis more stringently. The proposed architecture may also be useful for automatic self-adjusting damage avoidance in robots, an important consideration for next generation soft' robots designed to interact with people.
  •  
7.
  • Dean, Paul, et al. (författare)
  • The cerebellar microcircuit as an adaptive filter: experimental and computational evidence
  • 2010
  • Ingår i: Nature Reviews Neuroscience. - : Springer Science and Business Media LLC. - 1471-003X .- 1471-0048. ; 11:1, s. 30-43
  • Forskningsöversikt (refereegranskat)abstract
    • Initial investigations of the cerebellar microcircuit inspired the Marr-Albus theoretical framework of cerebellar function. We review recent developments in the experimental understanding of cerebellar microcircuit characteristics and in the computational analysis of Marr-Albus models. We conclude that many Marr-Albus models are in effect adaptive filters, and that evidence for symmetrical long-term potentiation and long-term depression, interneuron plasticity, silent parallel fibre synapses and recurrent mossy fibre connectivity is strikingly congruent with predictions from adaptive-filter models of cerebellar function. This congruence suggests that insights from adaptive-filter theory might help to address outstanding issues of cerebellar function, including both microcircuit processing and extra-cerebellar connectivity.
  •  
8.
  • Ejserholm, Fredrik, et al. (författare)
  • A polymer based electrode array for recordings in the cerebellum
  • 2011
  • Ingår i: 2011 5th International IEEE/EMBS Conference on Neural Engineering (NER). - 9781424441402 ; , s. 376-379
  • Konferensbidrag (refereegranskat)abstract
    • A polymer foil based array with 9 gold electrodes for chronic electrophysiological recordings in the CNS has been developed. A polymer, SU-8, is pattered using photolithography techniques used every day in micro fabrication. This is beneficial if the electrode would be manufactured on a large scale basis. The technique makes it easy to adapt the array to best fit the structure of interest at the time, in this study the rat cerebellar cortex. The use of SU-8 as the base of the array makes the array very flexible, hence lets it stay close to the same cells following the movement of the brain. The electrodes can then be modified with platinum black to lower the impedance of the electrode up to one order of magnitude, making us able to create smaller electrodes but keeping the low impedance necessary to get a get the signal to noise ratio required. Platinum black modified arrays were also implanted chronically and showed excellent signal recording capabilities in rat cerebellum.
  •  
9.
  • Geborek, Pontus, et al. (författare)
  • Cerebellar cortical neuron responses evoked from the spinal border cell tract.
  • 2013
  • Ingår i: Frontiers in Neural Circuits. - : Frontiers Media SA. - 1662-5110. ; 7
  • Tidskriftsartikel (refereegranskat)abstract
    • Spinocerebellar systems are likely to be crucial for cerebellar hallmark functions such as coordination. However, in terms of cerebellar functional analyses, these are perhaps among the least explored systems. The aim of the present study is to achieve activation of a single component of the spinocerebellar systems and to explore to what extent it can influence the spike output of granule cells, Golgi cells, molecular layer (ML) interneurons (stellate and basket cells) and Purkinje cells (PCs). For this purpose, we took advantage of a unique arrangement discovered in neuroanatomical studies, in which the spinal border cell (SBC) component of the ventral spinocerebellar system was found to be the only spinocerebellar tract which ascends in the contralateral lateral funiculus (coLF) and have terminations in sublobulus C1 of the paramedian lobule in the posterior cerebellum. Using electrical stimulation of this tract, we find a subset of the cerebellar cortical neurons in this region to be moderately or powerfully activated. For example, some of our granule cells displayed high intensity responses whereas the majority of the granule cells displayed no response at all. The finding that more than half of the PCs were activated by stimulation of the SBC tract indicated that this system is capable of directly influencing cerebellar cortical output. The implications of these findings for the view of the integrative functions of the cerebellar cortex are discussed.
  •  
10.
  • Geborek, Pontus, et al. (författare)
  • Properties of bilateral spinocerebellar activation of cerebellar cortical neurons.
  • 2014
  • Ingår i: Frontiers in Neural Circuits. - : Frontiers Media SA. - 1662-5110. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • We aimed to explore the cerebellar cortical inputs from two spinocerebellar pathways, the spinal border cell-component of the ventral spinocerebellar tract (SBC-VSCT) and the dorsal spinocerebellar tract (DSCT), respectively, in the sublobule C1 of the cerebellar posterior lobe. The two pathways were activated by electrical stimulation of the contralateral lateral funiculus (coLF) and the ipsilateral LF (iLF) at lower thoracic levels. Most granule cells in sublobule C1 did not respond at all but part of the granule cell population displayed high-intensity responses to either coLF or iLF stimulation. As a rule, Golgi cells and Purkinje cell simple spikes responded to input from both LFs, although Golgi cells could be more selective. In addition, a small population of granule cells responded to input from both the coLF and the iLF. However, in these cases, similarities in the temporal topography and magnitude of the responses suggested that the same axons were stimulated from the two LFs, i.e., that the axons of individual spinocerebellar neurons could be present in both funiculi. This was also confirmed for a population of spinal neurons located within known locations of SBC-VSCT neurons and dorsal horn (dh) DSCT neurons. We conclude that bilateral spinocerebellar responses can occur in cerebellar granule cells, but the VSCT and DSCT systems that provide the input can also be organized bilaterally. The implications for the traditional functional separation of VSCT and DSCT systems and the issue whether granule cells primarily integrate functionally similar information or not are discussed.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 36

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy