SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobs DR) srt2:(2020-2024)"

Sökning: WFRF:(Jacobs DR) > (2020-2024)

  • Resultat 1-10 av 12
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  • 2021
  • swepub:Mat__t
  •  
4.
  • Kanai, M, et al. (författare)
  • 2023
  • swepub:Mat__t
  •  
5.
  • Breznau, Nate, et al. (författare)
  • Observing many researchers using the same data and hypothesis reveals a hidden universe of uncertainty
  • 2022
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 119:44
  • Tidskriftsartikel (refereegranskat)abstract
    • This study explores how researchers analytical choices affect the reliability of scientific findings. Most discussions of reliability problems in science focus on systematic biases. We broaden the lens to emphasize the idiosyncrasy of conscious and unconscious decisions that researchers make during data analysis. We coordinated 161 researchers in 73 research teams and observed their research decisions as they used the same data to independently test the same prominent social science hypothesis: that greater immigration reduces support for social policies among the public. In this typical case of social science research, research teams reported both widely diverging numerical findings and substantive conclusions despite identical start conditions. Researchers expertise, prior beliefs, and expectations barely predict the wide variation in research outcomes. More than 95% of the total variance in numerical results remains unexplained even after qualitative coding of all identifiable decisions in each teams workflow. This reveals a universe of uncertainty that remains hidden when considering a single study in isolation. The idiosyncratic nature of how researchers results and conclusions varied is a previously underappreciated explanation for why many scientific hypotheses remain contested. These results call for greater epistemic humility and clarity in reporting scientific findings.
  •  
6.
  • Jacobs, Keijo, 1988- (författare)
  • Silicon-Carbide-Based High-Voltage Submodules for HVDC Voltage-Source Converters
  • 2020
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In order to transition to renewable energy sources and simultaneously meet the increasing demand for electrical energy, highly flexible and efficient grids are required. High-voltage direct-current (HVDC) transmission and grids are foreseen to be a vital part of the future electricity grid. Voltage source converters (VSCs), interfacing between HVDC and high-voltage alternating current (HVAC) technology, need to comply with grid code, and offer high reliability and cost efficiency. The state-of-the-art VSC topology is the modular multilevel converter (MMC), which offers tailored harmonic performance, modularity, fault handling, redundancy, and low losses.This thesis investigates improvements for VSCs enabled by novel silicon carbide (SiC) power semiconductor devices. These devices feature lower losses, higher blocking voltage, and higher maximum operation temperature. However, a co-design of the different hardware levels (i.e., converter, submodule (SM), power device, and semiconductor) is required to unleash their full potential. The thesis features contributions on several of these hardware levels, aiming at improvements regarding defined technical requirements for VSCs.It has been shown that, on converter level, future ultrahigh-voltage (UHV) SiC bipolar devices with blocking voltages of up to 50 kV have the potential for significant reduction of converter complexity, volume, and losses. The increased SM voltage is a challenge for internal fault handling, which can be met by a proposed novel SM feature, the discharge loop.On SM level, additional improvements are enabled by synergies between power semiconductor device technology and SM topology. A comparative evaluation of a large variety of SM topologies in combination with different SiC power semiconductor device technologies identifies several promising design approaches for future SMs. An alternative to the state-of-the-art half-bridge and full-bridge SM is the semi-full-bridge, which is investigated intensively. It features lower switch count and lower losses compared to the full-bridge, while offering DC fault handling capability. Another topology, the double-connected double-zero SM, features additional conduction loss reduction in combination with SiC metal-oxide-semiconductor field-effect transistors (MOSFETs), which is enabled by parallel current paths during certain switching states. A SM cluster enhancing this effect is proposed.Finally, results on the optimization of SiC PiN diodes via different charge carrier lifetime tailoring methods are presented. The target application is a high-voltage high-frequency LCC converter. In the future, such diodes will also be required as anti-parallel diodes for novel UHV bipolar SiC devices, as bootstrap diodes in gate drivers, and as a part of snubber circuits.
  •  
7.
  •  
8.
  •  
9.
  •  
10.
  • Winfield, Alan F. T., et al. (författare)
  • IEEE P7001 : A Proposed Standard on Transparency
  • 2021
  • Ingår i: Frontiers in Robotics and AI. - : Frontiers Media S.A.. - 2296-9144. ; 8
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper describes IEEE P7001, a new draft standard on transparency of autonomous systems1. In the paper, we outline the development and structure of the draft standard. We present the rationale for transparency as a measurable, testable property. We outline five stakeholder groups: users, the general public and bystanders, safety certification agencies, incident/accident investigators and lawyers/expert witnesses, and explain the thinking behind the normative definitions of “levels” of transparency for each stakeholder group in P7001. The paper illustrates the application of P7001 through worked examples of both specification and assessment of fictional autonomous systems.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 12

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy