SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jacobsen Sten Eirik W) srt2:(2010-2014)"

Sökning: WFRF:(Jacobsen Sten Eirik W) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Woll, Petter S, et al. (författare)
  • Myelodysplastic Syndromes Are Propagated by Rare and Distinct Human Cancer Stem Cells In Vivo.
  • 2014
  • Ingår i: Cancer Cell. - : Elsevier BV. - 1878-3686 .- 1535-6108. ; 25:6, s. 794-808
  • Tidskriftsartikel (refereegranskat)abstract
    • Evidence for distinct human cancer stem cells (CSCs) remains contentious and the degree to which different cancer cells contribute to propagating malignancies in patients remains unexplored. In low- to intermediate-risk myelodysplastic syndromes (MDS), we establish the existence of rare multipotent MDS stem cells (MDS-SCs), and their hierarchical relationship to lineage-restricted MDS progenitors. All identified somatically acquired genetic lesions were backtracked to distinct MDS-SCs, establishing their distinct MDS-propagating function in vivo. In isolated del(5q)-MDS, acquisition of del(5q) preceded diverse recurrent driver mutations. Sequential analysis in del(5q)-MDS revealed genetic evolution in MDS-SCs and MDS-progenitors prior to leukemic transformation. These findings provide definitive evidence for rare human MDS-SCs in vivo, with extensive implications for the targeting of the cells required and sufficient for MDS-propagation.
  •  
2.
  • Ahlenius, Henrik, et al. (författare)
  • Adaptor Protein LNK Is a Negative Regulator of Brain Neural Stem Cell Proliferation after Stroke.
  • 2012
  • Ingår i: The Journal of Neuroscience : the official journal of the Society for Neuroscience. - 1529-2401. ; 32:15, s. 5151-5164
  • Tidskriftsartikel (refereegranskat)abstract
    • Ischemic stroke causes transient increase of neural stem and progenitor cell (NSPC) proliferation in the subventricular zone (SVZ), and migration of newly formed neuroblasts toward the damaged area where they mature to striatal neurons. The molecular mechanisms regulating this plastic response, probably involved in structural reorganization and functional recovery, are poorly understood. The adaptor protein LNK suppresses hematopoietic stem cell self-renewal, but its presence and role in the brain are poorly understood. Here we demonstrate that LNK is expressed in NSPCs in the adult mouse and human SVZ. Lnk(-/-) mice exhibited increased NSPC proliferation after stroke, but not in intact brain or following status epilepticus. Deletion of Lnk caused increased NSPC proliferation while overexpression decreased mitotic activity of these cells in vitro. We found that Lnk expression after stroke increased in SVZ through the transcription factors STAT1/3. LNK attenuated insulin-like growth factor 1 signaling by inhibition of AKT phosphorylation, resulting in reduced NSPC proliferation. Our findings identify LNK as a stroke-specific, endogenous negative regulator of NSPC proliferation, and suggest that LNK signaling is a novel mechanism influencing plastic responses in postischemic brain.
  •  
3.
  • Buza-Vidas, Natalija, et al. (författare)
  • FLT3 expression initiates in fully multipotent mouse hematopoietic progenitor cells
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:6, s. 1544-1548
  • Tidskriftsartikel (refereegranskat)abstract
    • Lymphoid-primed multipotent progenitors with down-regulated megakaryocyte-erythroid (MkE) potential are restricted to cells with high levels of cell-surface FLT3 expression, whereas HSCs and MkE progenitors lack detectable cell-surface FLT3. These findings are compatible with FLT3 cell-surface expression not being detectable in the fully multipotent stem/progenitor cell compartment in mice. If so, this process could be distinct from human hematopoiesis, in which FLT3 already is expressed in multipotent stem/progenitor cells. The expression pattern of Flt3 (mRNA) and FLT3 (protein) in multipotent progenitors is of considerable relevance for mouse models in which prognostically important Flt3 mutations are expressed under control of the endogenous mouse Flt3 promoter. Herein, we demonstrate that mouse Flt3 expression initiates in fully multipotent progenitors because in addition to lymphoid and granulocyte-monocyte progenitors, FLT3(-) Mk- and E-restricted downstream progenitors are also highly labeled when Flt3-Cre fate mapping is applied. (Blood. 2011;118(6):1544-1548)
  •  
4.
  • Böiers, Charlotta, et al. (författare)
  • Expression and role of FLT3 in regulation of the earliest stage of normal granulocyte-monocyte progenitor development.
  • 2010
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; May 4, s. 5061-5068
  • Tidskriftsartikel (refereegranskat)abstract
    • Mice deficient in FLT3 signalling have reductions in early multipotent and lymphoid progenitors, whereas no evident myeloid phenotype has been reported. However, activating mutations of Flt3 are among the most common genetic events in acute myeloid leukemia and mice harbouring internal tandem duplications within Flt3 (Flt3-ITD) develop myeloproliferative disease, with characteristic expansion of granulocyte-monocyte (GM) progenitors, possibly compatible with FLT3-ITD promoting a myeloid fate of multipotent progenitors. Alternatively, FLT3 might be expressed at the earliest stages of GM development. Herein, we investigated the expression, function and role of FLT3 in recently identified early GM progenitors. Flt3-cre fate mapping established that most progenitors and mature progeny of the GM lineage are derived from Flt3 expressing progenitors. A higher expression of FLT3 was found in preGMP compared to GMP, and preGMPs were more responsive to stimulation with FLT3 ligand (FL). Whereas preGMPs and GMPs were reduced in Fl(-/-) mice, megakaryocyte-erythroid progenitors were unaffected and lacked FLT3 expression. Notably, mice deficient in both Thrombopoietin (THPO) and FL, had a more pronounced GM progenitor phenotype than Thpo(-/-) mice, establishing a role of FL in THPO-dependent and independent regulation of GM progenitors, of likely significance for myeloid malignancies with Flt3-ITD mutations.
  •  
5.
  • Böiers, Charlotta, et al. (författare)
  • Lymphomyeloid Contribution of an Immune-Restricted Progenitor Emerging Prior to Definitive Hematopoietic Stem Cells.
  • 2013
  • Ingår i: Cell Stem Cell. - : Elsevier BV. - 1934-5909 .- 1875-9777. ; 13:5, s. 535-548
  • Tidskriftsartikel (refereegranskat)abstract
    • In jawed vertebrates, development of an adaptive immune-system is essential for protection of the born organism against otherwise life-threatening pathogens. Myeloid cells of the innate immune system are formed early in development, whereas lymphopoiesis has been suggested to initiate much later, following emergence of definitive hematopoietic stem cells (HSCs). Herein, we demonstrate that the embryonic lymphoid commitment process initiates earlier than previously appreciated, prior to emergence of definitive HSCs, through establishment of a previously unrecognized entirely immune-restricted and lymphoid-primed progenitor. Notably, this immune-restricted progenitor appears to first emerge in the yolk sac and contributes physiologically to the establishment of lymphoid and some myeloid components of the immune-system, establishing the lymphomyeloid lineage restriction process as an early and physiologically important lineage-commitment step in mammalian hematopoiesis.
  •  
6.
  • Grövdal, Michael, et al. (författare)
  • Maintenance treatment with azacytidine for patients with high-risk myelodysplastic syndromes (MDS) or acute myeloid leukaemia following MDS in complete remission after induction chemotherapy
  • 2010
  • Ingår i: British Journal of Haematology. - : Wiley. - 0007-1048 .- 1365-2141. ; 150:3, s. 293-302
  • Tidskriftsartikel (refereegranskat)abstract
    • This prospective Phase II study is the first to assess the feasibility and efficacy of maintenance 5-azacytidine for older patients with high-risk myelodysplastic syndrome (MDS), chronic myelomonocytic leukaemia and MDS-acute myeloid leukaemia syndromes in complete remission (CR) after induction chemotherapy. Sixty patients were enrolled and treated by standard induction chemotherapy. Patients that reached CR started maintenance therapy with subcutaneous azacytidine, 5/28 d until relapse. Promoter-methylation status of CDKN2B (P15 ink4b), CDH1 and HIC1 was examined pre-induction, in CR and 6, 12 and 24 months post CR. Twenty-four (40%) patients achieved CR after induction chemotherapy and 23 started maintenance treatment with azacytidine. Median CR duration was 13.5 months, >24 months in 17% of the patients, and 18-30.5 months in the four patients with trisomy 8. CR duration was not associated with CDKN2B methylation status or karyotype. Median overall survival was 20 months. Hypermethylation of CDH1 was significantly associated with low CR rate, early relapse, and short overall survival (P = 0.003). 5-azacytidine treatment, at a dose of 60 mg/m(2) was well tolerated. Grade III-IV thrombocytopenia and neutropenia occurred after 9.5 and 30% of the cycles, respectively, while haemoglobin levels increased during treatment. 5-azacytidine treatment is safe, feasible and may be of benefit in a subset of patients.
  •  
7.
  • Kharazi, Shabnam, et al. (författare)
  • Impact of gene dosage, loss of wild-type allele, and FLT3 ligand on Flt3-ITD-induced myeloproliferation
  • 2011
  • Ingår i: Blood. - : American Society of Hematology. - 1528-0020 .- 0006-4971. ; 118:13, s. 3613-3621
  • Tidskriftsartikel (refereegranskat)abstract
    • Acquisition of homozygous activating growth factor receptor mutations might accelerate cancer progression through a simple gene-dosage effect. Internal tandem duplications (ITDs) of FLT3 occur in approximately 25% cases of acute myeloid leukemia and induce ligand-independent constitutive signaling. Homozygous FLT3-ITDs confer an adverse prognosis and are frequently detected at relapse. Using a mouse knockin model of Flt3-internal tandem duplication (Flt3-ITD)-induced myeloproliferation, we herein demonstrate that the enhanced myeloid phenotype and expansion of granulocyte-monocyte and primitive Lin(-)Sca1(+)c-Kit(+) progenitors in Flt3-ITD homozygous mice can in part be mediated through the loss of the second wild-type allele. Further, whereas autocrine FLT3 ligand production has been implicated in FLT3-ITD myeloid malignancies and resistance to FLT3 inhibitors, we demonstrate here that the mouse Flt3(ITD/ITD) myeloid phenotype is FLT3 ligand-independent. (Blood. 2011; 118(13):3613-3621)
  •  
8.
  • Luc, Sidinh, et al. (författare)
  • The earliest thymic T cell progenitors sustain B cell and myeloid lineage potential.
  • 2012
  • Ingår i: Nature Immunology. - : Springer Science and Business Media LLC. - 1529-2908 .- 1529-2916. ; 13:4, s. 412-419
  • Tidskriftsartikel (refereegranskat)abstract
    • The stepwise commitment from hematopoietic stem cells in the bone marrow to T lymphocyte-restricted progenitors in the thymus represents a paradigm for understanding the requirement for distinct extrinsic cues during different stages of lineage restriction from multipotent to lineage-restricted progenitors. However, the commitment stage at which progenitors migrate from the bone marrow to the thymus remains unclear. Here we provide functional and molecular evidence at the single-cell level that the earliest progenitors in the neonatal thymus had combined granulocyte-monocyte, T lymphocyte and B lymphocyte lineage potential but not megakaryocyte-erythroid lineage potential. These potentials were identical to those of candidate thymus-seeding progenitors in the bone marrow, which were closely related at the molecular level. Our findings establish the distinct lineage-restriction stage at which the T cell lineage-commitment process transits from the bone marrow to the remote thymus.
  •  
9.
  •  
10.
  • Mansour, Anna, et al. (författare)
  • Osteoclasts promote the formation of hematopoietic stem cell niches in the bone marrow
  • 2012
  • Ingår i: Journal of Experimental Medicine. - : Rockefeller University Press. - 1540-9538 .- 0022-1007. ; 209:3, s. 537-549
  • Tidskriftsartikel (refereegranskat)abstract
    • Formation of the hematopoietic stem cell (HSC) niche in bone marrow (BM) is tightly associated with endochondral ossification, but little is known about the mechanisms involved. We used the oc/oc mouse, a mouse model with impaired endochondral ossification caused by a loss of osteoclast (OCL) activity, to investigate the role of osteoblasts (OBLs) and OCLs in the HSC niche formation. The absence of OCL activity resulted in a defective HSC niche associated with an increased proportion of mesenchymal progenitors but reduced osteoblastic differentiation, leading to impaired HSC homing to the BM. Restoration of OCL activity reversed the defect in HSC niche formation. Our data demonstrate that OBLs are required for establishing HSC niches and that osteoblastic development is induced by OCLs. These findings broaden our knowledge of the HSC niche formation, which is critical for understanding normal and pathological hematopoiesis.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy