SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jagannathan H.) srt2:(2020-2024)"

Sökning: WFRF:(Jagannathan H.) > (2020-2024)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Combes, F., et al. (författare)
  • PKS 1830-211: OH and HI at z = 0.89 and the first MeerKAT UHF spectrum
  • 2021
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 648
  • Tidskriftsartikel (refereegranskat)abstract
    • The Large Survey Project (LSP) "MeerKAT Absorption Line Survey"(MALS) is a blind H I 21 cm and OH 18 cm absorption line survey in the L- and UHF-bands, primarily designed to better determine the occurrence of atomic and molecular gas in the circumgalactic and intergalactic medium, and its redshift evolution. Here we present the first results using the UHF band obtained towards the strongly lensed radio source PKS 1830-211, revealing the detection of absorption produced by the lensing galaxy. With merely 90 min of data acquired on-source for science verification and processed using the Automated Radio Telescope Imaging Pipeline (ARTIP), we detect in absorption the known H I 21 cm and OH 18 cm main lines at z = 0.89 at an unprecedented signal-to-noise ratio (4000 in the continuum, in each 6 km s-1 wide channel). For the first time we report the detection of OH satellite lines at z = 0.89, which until now have not been detected at z > 0.25. We decompose the OH lines into a thermal and a stimulated contribution, where the 1612 and 1720 MHz lines are conjugate. The total OH 1720 MHz emission line luminosity is 6100 L⊙. This is the most luminous known 1720 MHz maser line and is also among the most luminous of the OH main line megamasers. The absorption components of the different images of the background source sample different light paths in the lensing galaxy, and their weights in the total absorption spectrum are expected to vary in time on daily and monthly time scales. We compare our normalized spectra with those obtained more than 20 years ago, and find no variation. We interpret the absorption spectra with the help of a lens galaxy model derived from an N-body hydrodynamical simulation, with a morphology similar to its optical HST image. The resulting absorption lines depend mainly on the background continuum and the radial distribution of the gas surface density for each atomic and molecular species. We show that it is possible to reproduce the observations assuming a realistic spiral galaxy disk without invoking any central gas outflows. However, there are distinct and faint high-velocity features in the ALMA millimeter absorption spectra that most likely originate from high-velocity clouds or tidal features. These clouds may contribute to broaden the H I and OH spectra.
  •  
2.
  • Bannasch, DL, et al. (författare)
  • Dog colour patterns explained by modular promoters of ancient canid origin
  • 2021
  • Ingår i: Nature ecology & evolution. - : Springer Science and Business Media LLC. - 2397-334X. ; 5:10, s. 1415-
  • Tidskriftsartikel (refereegranskat)abstract
    • Distinctive colour patterns in dogs are an integral component of canine diversity. Colour pattern differences are thought to have arisen from mutation and artificial selection during and after domestication from wolves but important gaps remain in understanding how these patterns evolved and are genetically controlled. In other mammals, variation at the ASIP gene controls both the temporal and spatial distribution of yellow and black pigments. Here, we identify independent regulatory modules for ventral and hair cycle ASIP expression, and we characterize their action and evolutionary origin. Structural variants define multiple alleles for each regulatory module and are combined in different ways to explain five distinctive dog colour patterns. Phylogenetic analysis reveals that the haplotype combination for one of these patterns is shared with Arctic white wolves and that its hair cycle-specific module probably originated from an extinct canid that diverged from grey wolves more than 2 million years ago. Natural selection for a lighter coat during the Pleistocene provided the genetic framework for widespread colour variation in dogs and wolves.
  •  
3.
  • Deka, P. P., et al. (författare)
  • The MeerKAT Absorption Line Survey (MALS) Data Release. I. Stokes I Image Catalogs at 1-1.4 GHz
  • 2024
  • Ingår i: Astrophysical Journal, Supplement Series. - 1538-4365 .- 0067-0049. ; 270:2
  • Tidskriftsartikel (refereegranskat)abstract
    • The MeerKAT Absorption Line Survey (MALS) has observed 391 telescope pointings at the L band (900-1670 MHz) at delta less than or similar to +20 degrees. We present radio continuum images and a catalog of 495,325 (240,321) radio sources detected at a signal-to-noise ratio (S/N) > 5 over an area of 2289 deg(2) (1132 deg(2)) at 1006 MHz (1381 MHz). Every MALS pointing contains a central bright radio source (S 1 GHz greater than or similar to 0.2 Jy). The median spatial resolution is 12 ''(8 ''). The median rms noise away from the pointing center is 25 mu Jy beam(-1) (22 mu Jy beam-1) and is within similar to 15% of the achievable theoretical sensitivity. The flux density scale ratio and astrometric accuracy deduced from multiply observed sources in MALS are <1% (8% scatter) and 1 '', respectively. Through comparisons with NVSS and FIRST at 1.4 GHz, we establish the catalog's accuracy in the flux density scale and astrometry to be better than 6% (15% scatter) and 0.'' 8, respectively. The median flux density offset is higher (9%) for an alternate beam model based on holographic measurements. The MALS radio source counts at 1.4 GHz are in agreement with literature. We estimate spectral indices (alpha) of a subset of 125,621 sources (S/N > 8), confirm the flattening of spectral indices with decreasing flux density, and identify 140 ultra-steep-spectrum (alpha < -1.3) sources as prospective high-z radio galaxies (z > 2). We have identified 1308 variable and 122 transient radio sources comprising primarily active galactic nuclei that demonstrate long-term (26 yr) variability in their observed flux densities. The MALS catalogs and images are publicly available at https://mals.iucaa.in.
  •  
4.
  • Emig, K.L., et al. (författare)
  • Discovery of Hydrogen Radio Recombination Lines at z = 0.89 toward PKS 1830-211
  • 2023
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 1538-4357 .- 0004-637X. ; 944:1
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the detection of stimulated hydrogen radio recombination line (RRL) emission from ionized gas in a z = 0.89 galaxy using 580-1670 MHz observations from the MeerKAT Absorption Line Survey. The RRL emission originates in a galaxy that intercepts and strongly lenses the radio blazar PKS 1830−211 (z = 2.5). This is the second detection of RRLs outside of the local Universe and the first clearly associated with hydrogen. We detect effective H144α (and H163α) transitions at observed frequencies of 1156 (798) MHz by stacking 17 (27) RRLs with 21σ (14σ) significance. The RRL emission contains two main velocity components and is coincident in velocity with H i 21 cm and OH 18 cm absorption. We use the RRL spectral line energy distribution and a Bayesian analysis to constrain the density (n e ) and the volume-averaged path length (ℓ) of the ionized gas. We determine log ( n e ) = 2.0 − 0.7 + 1.0 cm−3 and log ( ℓ ) = − 0.7 − 1.1 + 1.1 pc toward the northeast (NE) lensed image, likely tracing the diffuse thermal phase of the ionized ISM in a thin disk. Toward the southwest (SW) lensed image, we determine log ( n e ) = 3.2 − 1.0 + 0.4 cm−3 and log ( ℓ ) = − 2.7 − 0.2 + 1.8 pc, tracing gas that is more reminiscent of H scii regions. We estimate a star formation (surface density) rate of ΣSFR ∼ 0.6 M ⊙ yr−1 kpc−2 or SFR ∼ 50 M ⊙ yr−1, consistent with a star-forming main-sequence galaxy of M ⋆ ∼ 1011 M ⊙. The discovery presented here opens up the possibility of studying ionized gas at high redshifts using RRL observations from current and future (e.g., SKA and ngVLA) radio facilities.
  •  
5.
  • Hurley, Carolyn K., et al. (författare)
  • Common, intermediate and well-documented HLA alleles in world populations : CIWD version 3.0.0
  • 2020
  • Ingår i: HLA. - : WILEY. - 2059-2302 .- 2059-2310. ; 95:6, s. 516-531
  • Tidskriftsartikel (refereegranskat)abstract
    • A catalog of common, intermediate and well-documented (CIWD) HLA-A, -B, -C, -DRB1, -DRB3, -DRB4, -DRB5, -DQB1 and -DPB1 alleles has been compiled from over 8 million individuals using data from 20 unrelated hematopoietic stem cell volunteer donor registries. Individuals are divided into seven geographic/ancestral/ethnic groups and data are summarized for each group and for the total population. P (two-field) and G group assignments are divided into one of four frequency categories: common (>= 1 in 10 000), intermediate (>= 1 in 100 000), well-documented (>= 5 occurrences) or not-CIWD. Overall 26% of alleles in IPD-IMGT/HLA version 3.31.0 at P group resolution fall into the three CIWD categories. The two-field catalog includes 18% (n = 545) common, 17% (n = 513) intermediate, and 65% (n = 1997) well-documented alleles. Full-field allele frequency data are provided but are limited in value by the variations in resolution used by the registries. A recommended CIWD list is based on the most frequent category in the total or any of the seven geographic/ancestral/ethnic groups. Data are also provided so users can compile a catalog specific to the population groups that they serve. Comparisons are made to three previous CWD reports representing more limited population groups. This catalog, CIWD version 3.0.0, is a step closer to the collection of global HLA frequencies and to a clearer view of HLA diversity in the human population as a whole.
  •  
6.
  •  
7.
  • Wagenveld, Jonah D., et al. (författare)
  • The MeerKAT Absorption Line Survey: Homogeneous continuum catalogues towards a measurement of the cosmic radio dipole
  • 2023
  • Ingår i: Astronomy and Astrophysics. - : EDP Sciences. - 0004-6361 .- 1432-0746. ; 673
  • Tidskriftsartikel (refereegranskat)abstract
    • The number counts of homogeneous samples of radio sources are a tried and true method of probing the large-scale structure of the Universe, as most radio sources outside the Galactic plane are at cosmological distances. As such, they are expected to trace the cosmic radio dipole, an anisotropy analogous to the dipole seen in the cosmic microwave background (CMB). Results have shown that although the cosmic radio dipole matches the direction of the CMB dipole, it has a significantly larger amplitude. This unexplained result challenges our assumption of the Universe being isotropic, which can have large repercussions for the current cosmological paradigm. Though significant measurements have been made, sensitivity to the radio dipole is generally hampered by systematic effects that can cause large biases in the measurement. Here we assess these systematics with data from the MeerKAT Absorption Line Survey (MALS), a blind search for absorption lines with pointings centred on bright radio sources. With the sensitivity and field of view of MeerKAT, thousands of sources are observed in each pointing, allowing for the possibility of measuring the cosmic radio dipole given enough pointings. We present the analysis of ten MALS pointings, focusing on systematic effects that could lead to an inhomogeneous catalogue. We describe the calibration and creation of full band continuum images and catalogues, producing a combined catalogue containing 16 307 sources and covering 37.5 square degrees of sky down to a sensitivity of 10 μJy beam-1. We measure the completeness, purity, and flux recovery statistics for these catalogues using simulated data. We investigate different source populations in the catalogues by looking at flux densities and spectral indices and how they might influence source counts. Using the noise characteristics of the pointings, we find global measures that can be used to correct for the incompleteness of the catalogue, producing corrected number counts down to 100-200 μJy. We show that we can homogenise the catalogues and properly account for systematic effects. We determine that we can measure the dipole to 3significance with 100 MALS pointings.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy