SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jakesova Marie) srt2:(2018)"

Sökning: WFRF:(Jakesova Marie) > (2018)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Derek, Vedran, et al. (författare)
  • Micropatterning of organic electronic materials using a facile aqueous photolithographic process
  • 2018
  • Ingår i: AIP Advances. - : AMER INST PHYSICS. - 2158-3226. ; 8:10
  • Tidskriftsartikel (refereegranskat)abstract
    • Patterning organic semiconductors via traditional solution-based microfabrication techniques is precluded by undesired interactions between processing solvents and the organic material. Herein we show how to avoid these problems easily and introduce a simple lift-off method to pattern organic semiconductors. Positive tone resist is deposited on the substrate, followed by conventional exposure and development. After deposition of the organic semiconductor layer, the remaining photoresist is subjected to a flood exposure, rendering it developable. Lift-off is then performed using the same aqueous developer as before. We find that the aqueous developers do not compromise the integrity of the organic layer or alter its electronic performance. We utilize this technique to pattern four different organic electronic materials: epindo-lidione (EPI), a luminescent semiconductor, p-n photovoltaic bilayers of metal-free phthalocyanine and N, N-dimethyltetracarboxylic diimide, and finally the archetypical conducting polymer poly(3,4-ethylenedioxythiophene) (PEDOT). The result of our efforts is a facile method making use of well-established techniques that can be added to the toolbox of research and industrial scientists developing organic electronics technology. (c) 2018 Author(s).
  •  
2.
  • Gryszel, Maciej, et al. (författare)
  • General Observation of Photocatalytic Oxygen Reduction to Hydrogen Peroxide by Organic Semiconductor Thin Films and Colloidal Crystals
  • 2018
  • Ingår i: ACS Applied Materials and Interfaces. - : AMER CHEMICAL SOC. - 1944-8244 .- 1944-8252. ; 10:16, s. 13253-13257
  • Tidskriftsartikel (refereegranskat)abstract
    • Low-cost semiconductor photocatalysts offer unique possibilities for industrial chemical transformations and energy conversion applications. We report that a range of organic semiconductors are capable of efficient photocatalytic oxygen reduction to H2O2 in aqueous conditions. These semiconductors, in the form of thin films, support a 2-electron/2-proton redox cycle involving photoreduction of dissolved O-2 to H2O2, with the concurrent photooxidation of organic substrates: formate, oxalate, and phenol. Photochemical oxygen reduction is observed in a pH range from 2 to 12. In cases where valence band energy of the semiconductor is energetically high, autoxidation competes with oxidation of the donors, and thus turnover numbers are low. Materials with deeper valence band energies afford higher stability and also oxidation of H2O to O-2. We found increased H2O2 evolution rate for surfactant-stabilized nanoparticles versus planar thin films. These results evidence that photochemical O-2 reduction may be a widespread feature of organic semiconductors, and open potential avenues for organic semiconductors for catalytic applications.
  •  
3.
  • Rand, David, et al. (författare)
  • Direct Electrical Neurostimulation with Organic Pigment Photocapacitors
  • 2018
  • Ingår i: Advanced Materials. - : WILEY-V C H VERLAG GMBH. - 0935-9648 .- 1521-4095. ; 30:25
  • Tidskriftsartikel (refereegranskat)abstract
    • An efficient nanoscale semiconducting optoelectronic system is reported, which is optimized for neuronal stimulation: the organic electrolytic photocapacitor. The devices comprise a thin (80 nm) trilayer of metal and p-n semiconducting organic nanocrystals. When illuminated in physiological solution, these metal-semiconductor devices charge up, transducing light pulses into localized displacement currents that are strong enough to electrically stimulate neurons with safe light intensities. The devices are freestanding, requiring no wiring or external bias, and are stable in physiological conditions. The semiconductor layers are made using ubiquitous and nontoxic commercial pigments via simple and scalable deposition techniques. It is described how, in physiological media, photovoltage and charging behavior depend on device geometry. To test cell viability and capability of neural stimulation, photostimulation of primary neurons cultured for three weeks on photocapacitor films is shown. Finally, the efficacy of the device is demonstrated by achieving direct optoelectronic stimulation of light-insensitive retinas, proving the potential of this device platform for retinal implant technologies and for stimulation of electrogenic tissues in general. These results substantiate the conclusion that these devices are the first non-Si optoelectronic platform capable of sufficiently large photovoltages and displacement currents to enable true capacitive stimulation of excitable cells.
  •  
4.
  •  
5.
  •  
6.
  • Warczak, Magdalena, et al. (författare)
  • Organic semiconductor perylenetetracarboxylic diimide (PTCDI) electrodes for electrocatalytic reduction of oxygen to hydrogen peroxide
  • 2018
  • Ingår i: Chemical Communications. - : ROYAL SOC CHEMISTRY. - 1359-7345 .- 1364-548X. ; 54:16, s. 1960-1963
  • Tidskriftsartikel (refereegranskat)abstract
    • Hydrogen peroxide is one of the most important industrial chemicals and there is great demand for the production of H2O2 usingmore sustainable and environmentally benign methods. We show electrochemical production of H2O2 by the reduction of O-2, enabled by an organic semiconductor catalyst, N,N-dimethyl perylenetetracarboxylic diimide (PTCDI). We make PTCDI cathodes that are capable of stable and reusable operation in aqueous electrolytes in a pH range of 1-13 with a catalytic figure of merit as high as 26 kg H2O2 per g catalyst per h. These performance and stability open new avenues for organic small molecule semiconductors as electrocatalysts.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy