SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jazin Elena) srt2:(2000-2004)"

Sökning: WFRF:(Jazin Elena) > (2000-2004)

  • Resultat 1-10 av 19
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Alfonso, Julieta, et al. (författare)
  • Analysis of gene expression in the rat hippocampus using Real Time PCR reveals high inter-individual variation in mRNA expression levels
  • 2002
  • Ingår i: Journal of Neuroscience Research. - : Wiley. - 0360-4012 .- 1097-4547. ; 67:2, s. 225-34
  • Tidskriftsartikel (refereegranskat)abstract
    • In mammals, gene transcription is a step subjected to tight regulation mechanisms. In fact, changes in mRNA levels in the central nervous system (CNS) can account for numerous phenotypic differences in brain function. We performed a high-resolution analysis of mRNA expression levels for 37 genes selected from a normal rat hippocampus cDNA library. mRNA amounts were quantified using a Real Time PCR SYBR Green assay. We found that, in general, individuals from an inbred rat population (n = 20) have shown 2-3 times differences in the basal level of expression of the genes analyzed. Up to several fold differences among individuals were observed for certain genes. These inter-individual differences were obtained after correction for the different amounts of mRNA in each sample. Power calculations were performed to determine the number of individuals required to detect reliable differences in expression levels between a control and an experimental group. These data indicated that, depending on the variability of the candidate gene selected, it was necessary to analyze from five to 135 individuals in each group to detect differences of 50% in the levels of mRNA expression between two groups investigated. The comparison of mRNA abundance from different genes revealed a wide range of expression levels for the 37 genes, showing a 26,000-fold difference between the highest and lowest expressed gene.
  •  
2.
  •  
3.
  •  
4.
  • Castensson, Anja, et al. (författare)
  • Decrease of serotonin receptor 2C in schizophrenia brains identified by high-resolution mRNA expression analysis
  • 2003
  • Ingår i: Biological Psychiatry. - 0006-3223 .- 1873-2402. ; 54:11, s. 1212-1221
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: RNA expression profiling can provide hints for the selection of candidate susceptibility genes, for formulation of hypotheses about the development of a disease, and/or for selection of candidate gene targets for novel drug development. We measured messenger RNA expression levels of 16 candidate genes in brain samples from 55 schizophrenia patients and 55 controls. This is the largest sample so far used to identify genes differentially expressed in schizophrenia brains. METHODS: We used a sensitive real-time polymerase chain reaction methodology and a novel statistical approach, including the development of a linear model of analysis of covariance type. RESULTS: We found two genes differentially expressed: monoamine oxidase B was significantly increased in schizophrenia brain (p =.001), whereas one of the serotonin receptor genes, serotonin receptor 2C, was significantly decreased (p =.001). Other genes, previously proposed to be differentially expressed in schizophrenia brain, were invariant in our analysis. CONCLUSIONS:The differential expression of serotonin receptor 2C is particularly relevant for the development of new atypical antipsychotic drugs. The strategy presented here is useful to evaluate hypothesizes for the development of the disease proposed by other investigators.
  •  
5.
  • Castensson, Anja, et al. (författare)
  • Decrease of serotonin receptor 2C in schizophrenia brains identified by high-resolution mRNA expression analysis
  • 2003
  • Ingår i: Biological Psychiatry. - : Elsevier BV. - 0006-3223 .- 1873-2402. ; 54:11, s. 1212-1221
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: RNA expression profiling can provide hints for the selection of candidate susceptibility genes, for formulation of hypotheses about the development of a disease, and/or for selection of candidate gene targets for novel drug development. We measured messenger RNA expression levels of 16 candidate genes in brain samples from 55 schizophrenia patients and 55 controls. This is the largest sample so far used to identify genes differentially expressed in schizophrenia brains.Methods: We used a sensitive real-time polymerase chain reaction methodology and a novel statistical approach, including the development of a linear model of analysis of covariance type.Results: We found two genes differentially expressed: monoamine oxidase B was significantly increased in schizophrenia brain (p = .001), whereas one of the serotonin receptor genes, serotonin receptor 2C, was significantly decreased (p = .001). Other genes, previously proposed to be differentially expressed in schizophrenia brain, were invariant in our analysis.Conclusions: The differential expression of serotonin receptor 2C is particularly relevant for the development of new atypical antipsychotic drugs. The strategy presented here is useful to evaluate hypothesizes for the development of the disease proposed by other investigators.
  •  
6.
  • Castensson, Anja, et al. (författare)
  • High-resolution quantification of specific mRNA levels in human brain autopsies and biopsies
  • 2000
  • Ingår i: Genome Research. - : Cold Spring Harbor Laboratory. - 1088-9051 .- 1549-5469. ; 10:8, s. 1219-29
  • Tidskriftsartikel (refereegranskat)abstract
    • Quantification of mRNA levels in human cortical brain biopsies and autopsies was performed using a fluorogenic 5' nuclease assay. The reproducibility of the assay using replica plates was 97%-99%. Relative quantities of mRNA from 16 different genes were evaluated using a statistical approach based on ANCOVA analysis. Comparison of the relative mRNA levels between two groups of samples with different time postmortem revealed unchanged relative expression levels for most genes. Only CYP26A1 mRNA levels showed a significant decrease with prolonged time postmortem (p = 0.00004). Also, there was a general decrease in measured mRNA levels for all genes in autopsies compared to biopsies; however, on comparing mRNA levels after adjusting with reference genes, no significant differences were found between mRNA levels in autopsies and biopsies. This observation indicates that studies of postmortem material can be performed to reveal the relative in vivo mRNA levels of genes. Power calculations were done to determine the number of individuals necessary to detect differences in mRNA levels of 1.5-fold to tenfold using the strategy described here. This analysis showed that samples from at least 50 individuals per group, patients and controls, are required for high-resolution ( approximately twofold changes) differential expression screenings in the human brain. Experiments done on ten individuals per group will result in a resolution of approximately fivefold changes in expression levels. In general, the sensitivity and resolution of any differential expression study will depend on the sample size used and the between-individual variability of the genes analyzed.
  •  
7.
  • Castensson, Anja, 1971- (författare)
  • High-resolution Studies of mRNA Expression in Brain : A Search for Genes Differently Expressed in Schizophrenia
  • 2003
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Gene expression differences between patients and controls can be used to find susceptibility genes and drug targets for a disease. High-resolution strategies are required because the differences between the investigated groups may be small and numerous factors may affect the mRNA quantity. This thesis is based on the use of real-time RT-PCR combined with a new statistical approach, developed to detect small differences between patients and controls and differences due to patient subgroups. Comparisons between human brain biopsy and autopsy samples showed that post-mortem tissue can be used to make conclusions on the relative mRNA levels in the living brain. Power analysis based on human brain mRNA expression from 14 genes adjusted with two reference genes, revealed that a sample size of 50 patients and 50 controls was required to detect a 2-fold difference with a power and a confidence of 95%. A similar study in rats revealed that approximately the same sample size was required for rat brain mRNA expression studies. The mRNA levels of several genes were studied in 55 schizophrenia and 55 control prefrontal brain autopsies, using a novel and more powerful statistical analysis. The serotonin receptor 2C gene (HTR2C) showed a significant 1.5-fold decrease in the patients as compared to controls, and the monoamine oxidase B gene (MAOB) a 1.2-fold increase. The mechanism behind the decrease of HTR2C mRNA levels was investigated by studying the correlation of drug treatment and HTR2C promoter polymorphisms to the HTR2C expression levels. The observed decrease was present in untreated patients, suggesting that the HTR2C mRNA decrease is correlated with the disease and not the treatment. There was no association between promoter polymorphisms and HTR2C expression levels. Thus, the molecular mechanism for the decreased expression remains unclear. Nevertheless, the results support a role for monoaminergic synapses in schizophrenia.
  •  
8.
  • Cavelier, L, et al. (författare)
  • MtDNA mutations in maternally inherited diabetes : presence of the 3397 ND1 mutation previously associated with Alzheimer's and Parkinson's disease
  • 2001
  • Ingår i: Hereditas. - : Springer Science and Business Media LLC. - 0018-0661 .- 1601-5223. ; 135:1, s. 65-70
  • Tidskriftsartikel (refereegranskat)abstract
    • Mutations in the mitochondrial tRNA(leu) (UUR) gene have been associated with diabetes mellitus and deafness. We screened for the presence of mtDNA mutations in the tRNA(leu) (UUR) gene and adjacent ND1 sequences in 12 diabetes mellitus pedigrees with a possible maternal inheritance of the disease. One patient carried a G to A substitution at nt 3243 (tRNA(leu) (UUR) gene) in heteroplasmic state. In a second pedigree a patient had an A to G substitution at nt 3397 in the ND1 gene. All maternal relatives of the proband had the 3397 substitution in homoplasmic state. This substitution was not present in 246 nonsymptomatic Caucasian controls. The 3397 substitution changes a highly conserved methionine to a valine at aa 31 and has previously been found in Alzheimer's (AD) and Parkinson's (PD) disease patients. Substitutions in the mitochondrial ND1 gene at aa 30 and 31 have associated with a number of different diseases (e.g. AD/PD, MELAS, cardiomyopathy and diabetes mellitus, LHON, Wolfram-syndrome and maternal inherited diabetes) suggesting that changes at these two codons may be associated with very diverse pathogenic processes. In a further attempt to search for mtDNA mutations outside the tRNAleu gene associated with diabetes, the whole mtDNA genome sequence was determined for two patients with maternally inherited diabetes and deafness. Except for substitutions previously reported as polymorphisms, none of the two patients showed any non-synonymous substitutions either in homoplasmic or heteroplasmic state. These results imply that the maternal inherited diabetes and deafness in these patients must result from alterations of nuclear genes and/or environmental factors.
  •  
9.
  • Cavelier, Lucia, et al. (författare)
  • MtDNA substitution rate and segregation of heteroplasmy in coding andnoncoding regions
  • 2000
  • Ingår i: Human Genetics. - : Springer Science and Business Media LLC. - 0340-6717 .- 1432-1203. ; 107:1, s. 45-50
  • Tidskriftsartikel (refereegranskat)abstract
    • The mitochondrial DNA (mtDNA) substitution rate and segregation of heteroplasmy were studied for the non-coding control region (D-loop) and 500 bp of the coding region between nucleotide positions 5550 and 6050, by sequence analysis of blood samples from 194 individuals, representing 33 maternal lineages. No homoplasmic nucleotide substitutions were detected in a total of 292 transmissions. The estimated substitution rate per nucleotide per million years for the control region (micro>0.21, 95% CI 0-0.6) was not significantly different from that for the coding region (micro>0.54, 95% CI 0-1.0). Variation in the length of homopolymeric C streches was observed at three sites in the control region (positions 65, 309 and 16,189), all of which were in the heteroplasmic state. Segregation of heteroplasmic genotypes between generations was observed in several maternal pedigrees. At position 309, a longer poly C tract length was strongly associated with a higher probability for heteroplasmy and rapid segregation between generations. The length heteroplasmy at positions 65 and 16,189 was found at low frequency and was confined to a few families.
  •  
10.
  • Emilsson, Lina, et al. (författare)
  • Increased monoamine oxidase messenger RNA expression levels in frontal cortex of Alzheimer's disease patients
  • 2002
  • Ingår i: Neuroscience Letters. - 0304-3940 .- 1872-7972. ; 326:1, s. 56-60.
  • Tidskriftsartikel (refereegranskat)abstract
    • Alzheimer's disease (AD) is a neurodegenerative disorder and the most common cause of dementia in the industrialised world. The two monoamine oxidase (MAO) enzymes, monoamine oxidase A (MAOA) and monoamine oxidase B (MAOB), are important in the metabolism of monoamine neurotransmitters. AD and ageing have been shown to increase enzyme activity for both MAOA and MAOB. An increase (rather than decrease) of enzyme activity is a rare event in a disease that results in a decrease in the number of cells in the brain. The mechanism, transcriptional or post-transcriptional, responsible for the increase in protein activity, is not known. In this study, we investigate for the first time the messenger RNA (mRNA) expression levels of both MAOA and MAOB in 246 cortical brain samples obtained at autopsy from 62 AD patients and 61 normal controls. We found a significant increase in mRNA levels for both MAOA (P=0.001) and MAOB (P=0.002) in disease brain tissue. This indicates that both MAO enzymes might be important in the progression of AD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 19

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy