SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jemth A. S) srt2:(2020-2024)"

Sökning: WFRF:(Jemth A. S) > (2020-2024)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Michel, M., et al. (författare)
  • Small-molecule activation of OGG1 increases oxidative DNA damage repair by gaining a new function
  • 2022
  • Ingår i: Science. - Stockholm : American Association for the Advancement of Science. - 0036-8075 .- 1095-9203. ; 376:6600, s. 1471-1476
  • Tidskriftsartikel (refereegranskat)abstract
    • Oxidative DNA damage is recognized by 8-oxoguanine (8-oxoG) DNA glycosylase 1 (OGG1), which excises 8-oxoG, leaving a substrate for apurinic endonuclease 1 (APE1) and initiating repair. Here, we describe a small molecule (TH10785) that interacts with the phenylalanine-319 and glycine-42 amino acids of OGG1, increases the enzyme activity 10-fold, and generates a previously undescribed b,d-lyase enzymatic function. TH10785 controls the catalytic activity mediated by a nitrogen base within its molecular structure. In cells, TH10785 increases OGG1 recruitment to and repair of oxidative DNA damage. This alters the repair process, which no longer requires APE1 but instead is dependent on polynucleotide kinase phosphatase (PNKP1) activity. The increased repair of oxidative DNA lesions with a small molecule may have therapeutic applications in various diseases and aging. © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works
  •  
2.
  • Johansson, J., et al. (författare)
  • Gustavson syndrome is caused by an in-frame deletion in RBMX associated with potentially disturbed SH3 domain interactions
  • 2024
  • Ingår i: European Journal of Human Genetics. - : SPRINGERNATURE. - 1018-4813 .- 1476-5438. ; 32:3, s. 333-341
  • Tidskriftsartikel (refereegranskat)abstract
    • RNA binding motif protein X-linked (RBMX) encodes the heterogeneous nuclear ribonucleoprotein G (hnRNP G) that regulates splicing, sister chromatid cohesion and genome stability. RBMX knock down experiments in various model organisms highlight the gene's importance for brain development. Deletion of the RGG/RG motif in hnRNP G has previously been associated with Shashi syndrome, however involvement of other hnRNP G domains in intellectual disability remain unknown. In the current study, we present the underlying genetic and molecular cause of Gustavson syndrome. Gustavson syndrome was first reported in 1993 in a large Swedish five-generation family presented with profound X-linked intellectual disability and an early death. Extensive genomic analyses of the family revealed hemizygosity for a novel in-frame deletion in RBMX in affected individuals (NM_002139.4; c.484_486del, p.(Pro162del)). Carrier females were asymptomatic and presented with skewed X-chromosome inactivation, indicating silencing of the pathogenic allele. Affected individuals presented minor phenotypic overlap with Shashi syndrome, indicating a different disease-causing mechanism. Investigation of the variant effect in a neuronal cell line (SH-SY5Y) revealed differentially expressed genes enriched for transcription factors involved in RNA polymerase II transcription. Prediction tools and a fluorescence polarization assay imply a novel SH3-binding motif of hnRNP G, and potentially a reduced affinity to SH3 domains caused by the deletion. In conclusion, we present a novel in-frame deletion in RBMX segregating with Gustavson syndrome, leading to disturbed RNA polymerase II transcription, and potentially reduced SH3 binding. The results indicate that disruption of different protein domains affects the severity of RBMX-associated intellectual disabilities.
  •  
3.
  • Bonagas, Nadilly, et al. (författare)
  • Pharmacological targeting of MTHFD2 suppresses acute myeloid leukemia by inducing thymidine depletion and replication stress
  • 2022
  • Ingår i: NATURE CANCER. - : Springer Science and Business Media LLC. - 2662-1347. ; 3:2, s. 156-
  • Tidskriftsartikel (refereegranskat)abstract
    • The folate metabolism enzyme MTHFD2 (methylenetetrahydrofolate dehydrogenase/cyclohydrolase) is consistently overexpressed in cancer but its roles are not fully characterized, and current candidate inhibitors have limited potency for clinical development. In the present study, we demonstrate a role for MTHFD2 in DNA replication and genomic stability in cancer cells, and perform a drug screen to identify potent and selective nanomolar MTHFD2 inhibitors; protein cocrystal structures demonstrated binding to the active site of MTHFD2 and target engagement. MTHFD2 inhibitors reduced replication fork speed and induced replication stress followed by S-phase arrest and apoptosis of acute myeloid leukemia cells in vitro and in vivo, with a therapeutic window spanning four orders of magnitude compared with nontumorigenic cells. Mechanistically, MTHFD2 inhibitors prevented thymidine production leading to misincorporation of uracil into DNA and replication stress. Overall, these results demonstrate a functional link between MTHFD2-dependent cancer metabolism and replication stress that can be exploited therapeutically with this new class of inhibitors. Helleday and colleagues describe a nanomolar MTHFD2 inhibitor that causes replication stress and DNA damage accumulation in cancer cells via thymidine depletion, demonstrating a potential therapeutic strategy in AML tumors in vivo.
  •  
4.
  • Mishra, Nawneet, et al. (författare)
  • Development of Monoclonal Antibodies to Detect for SARS-CoV-2 Proteins
  • 2022
  • Ingår i: Journal of Molecular Biology. - : Elsevier. - 0022-2836 .- 1089-8638. ; 434:10
  • Tidskriftsartikel (refereegranskat)abstract
    • The COVID-19 pandemic caused by SARS-CoV-2 infection has impacted the world economy and healthcare infrastructure. Key reagents with high specificity to SARS-CoV-2 proteins are currently lacking, which limits our ability to understand the pathophysiology of SARS-CoV-2 infections. To address this need, we initiated a series of studies to generate and develop highly specific antibodies against proteins from SARS-CoV-2 using an antibody engineering platform. These efforts resulted in 18 monoclonal antibodies against nine SARS-CoV-2 proteins. Here we report the characterization of several antibodies, including those that recognize Nsp1, Nsp8, Nsp12, and Orf3b viral proteins. Our validation studies included evaluation for use of antibodies in ELISA, western blots, and immunofluorescence assays (IFA). We expect that availability of these antibodies will enhance our ability to further characterize host-viral interactions, including specific roles played by viral proteins during infection, to acquire a better understanding of the pathophysiology of SARS-CoV-2 infections. (C) 2022 Published by Elsevier Ltd.
  •  
5.
  • Mishra, Nawneet, et al. (författare)
  • Monoclonal antibodies binding data for SARS-CoV-2 proteins
  • 2022
  • Ingår i: Data in Brief. - : Elsevier. - 2352-3409. ; 43
  • Tidskriftsartikel (refereegranskat)abstract
    • SARS-CoV-2 pandemic opens up the curiosity of understanding the coronavirus. This demand for the development of the regent, which can be used for academic and therapeutic applications. The present data provide the biochemical characterization of synthetically developed monoclonal antibodies for the SARS-CoV-2 proteins. The antibodies from phagedisplayed antibody libraries were selected with the SARS-CoV-2 proteins immobilized in microwell plates. The clones which bind to the antigen in Fab-phage ELISA were selected, and a two-point competitive phage ELISA was performed. Antibodies binding kinetic of IgGs for SARS-CoV2 proteins further carried with B.L.I. Systematic analysis of binding with different control proteins and purified SARS-CoV-2 ensured the robustness of the antibodies. (C) 2022 The Authors. Published by Elsevier Inc.
  •  
6.
  • Scaletti, Emma Rose, et al. (författare)
  • The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform-Selective Inhibitors
  • 2022
  • Ingår i: ChemMedChem. - : Wiley. - 1860-7179 .- 1860-7187. ; 17:18
  • Tidskriftsartikel (refereegranskat)abstract
    • Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is a mitochondrial 1-carbon metabolism enzyme, which is an attractive anticancer drug target as it is highly upregulated in cancer but is not expressed in healthy adult cells. Selective MTHFD2 inhibitors could therefore offer reduced side-effects during treatment, which are common with antifolate drugs that target other 1C-metabolism enzymes. This task is challenging however, as MTHFD2 shares high sequence identity with the constitutively expressed isozymes cytosolic MTHFD1 and mitochondrial MTHFD2L. In fact, one of the most potent MTHFD2 inhibitors reported to date, TH7299, is actually more active against MTHFD1 and MTHFD2L. While structures of MTHFD2 and MTHFD1 exist, no MTHFD2L structures are available. We determined the first structure of MTHFD2L and its complex with TH7299, which reveals the structural basis for its highly potent MTHFD2L inhibition. Detailed analysis of the MTHFD2L structure presented here clearly highlights the challenges associated with developing truly isoform-selective MTHFD2 inhibitors. 
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy