SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jenmalm Jensen Annika) srt2:(2015-2019)"

Sökning: WFRF:(Jenmalm Jensen Annika) > (2015-2019)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Diwakarla, Shanti, et al. (författare)
  • Aryl Sulfonamide Inhibitors of Insulin-Regulated Aminopeptidase Enhance Spine Density in Primary Hippocampal Neuron Cultures
  • 2016
  • Ingår i: ACS Chemical Neuroscience. - : American Chemical Society (ACS). - 1948-7193. ; 7:10, s. 1383-1392
  • Tidskriftsartikel (refereegranskat)abstract
    • The zinc metallopeptidase insulin regulated aminopeptidase (IRAP), which is highly expressed in the hippocampus and other brain regions associated with cognitive function, has been identified as a high-affinity binding site of the hexapeptide angiotensin IV (Ang IV). This hexapeptide is thought to facilitate learning and memory by binding to the catalytic site of IRAP to inhibit its enzymatic activity. In support of this hypothesis, low molecular weight, nonpeptide specific inhibitors of TRAP have been shown to enhance memory in rodent models. Recently, it was demonstrated that linear and macrocyclic Ang IV-derived peptides can alter the shape and increase the number of dendritic spines in hippocampal cultures, properties associated with enhanced cognitive performance. After screening a library of 10 500 drug like substances for their ability to inhibit IRAP, we identified a series of low molecular weight aryl sulfonamides, which exhibit no structural similarity to Ang IV, as moderately potent IRAP inhibitors:A structural and biological characterization of three of these aryl sulfonamides was performed. Their binding modes to human IRAP were explored by docking calculations combined with molecular dynamics simulations and binding affinity estimations using the linear interaction energy method. Two alternative binding modes emerged from this analysis, both of which correctly rank the ligands according to their experimental binding affinities for this series of compounds. Finally, we show that two of these drug-like IRAP inhibitors can alter dendritic spine morphology and increase spine density in primary cultures of hippocampal neurons.
  •  
2.
  • Diwakarla, Shanti, et al. (författare)
  • Binding to and Inhibition of Insulin-Regulated Aminopeptidase (IRAP) by Macrocyclic Disulfides Enhances Spine Density
  • 2016
  • Ingår i: Molecular Pharmacology. - : American Society for Pharmacology & Experimental Therapeutics (ASPET). - 0026-895X .- 1521-0111. ; 89:4, s. 413-424
  • Tidskriftsartikel (refereegranskat)abstract
    • Angiotensin IV (Ang IV) and related peptide analogues, as well as non-peptide inhibitors of insulin-regulated aminopeptidase (IRAP), have previously been shown to enhance memory and cognition in animal models. Furthermore, the endogenous IRAP substrates oxytocin and vasopressin are known to facilitate learning and memory. In this study, the two recently synthesized 13-membered macrocylic competitive IRAP inhibitors HA08 and HA09, which were designed to mimic the N-terminal of oxytocin and vasopressin, were assessed and compared based on their ability to bind to the IRAP active site, and alter dendritic spine density in rat hippocampal primary cultures. The binding modes of the IRAP inhibitors HA08, HA09 and of Ang IV in either the extended or γ-turn conformation at the C-terminal to human IRAP were predicted by docking and molecular dynamics (MD) simulations. The binding free energies calculated with the linear interaction energy (LIE) method, which are in excellent agreement with experimental data and simulations, have been used to explain the differences in activities of the IRAP inhibitors, both of which are structurally very similar, but differ only with regard to one stereogenic center. In addition, we show that HA08, which is 100-fold more potent than the epimer HA09, can enhance dendritic spine number and alter morphology, a process associated with memory facilitation. Therefore, HA08, one of the most potent IRAP inhibitors known today, may serve as a suitable starting point for medicinal chemistry programs aided by MD simulations aimed at discovering more drug-like cognitive enhancers acting via augmenting synaptic plasticity.
  •  
3.
  • Engen, Karin, et al. (författare)
  • Identification of Drug-Like Inhibitors of Insulin-Regulated Aminopeptidase Through Small-Molecule Screening
  • 2016
  • Ingår i: Assay and drug development technologies. - : Mary Ann Liebert Inc. - 1540-658X .- 1557-8127. ; 14:3, s. 180-193
  • Tidskriftsartikel (refereegranskat)abstract
    • Intracerebroventricular injection of angiotensin IV, a ligand of insulin-regulated aminopeptidase (IRAP), has been shown to improve cognitive functions in several animal models. Consequently, IRAP is considered a potential target for treatment of cognitive disorders. To identify nonpeptidic IRAP inhibitors, we adapted an established enzymatic assay based on membrane preparations from Chinese hamster ovary cells and a synthetic peptide-like substrate for high-throughput screening purposes. The 384-well microplate-based absorbance assay was used to screen a diverse set of 10,500 compounds for their inhibitory capacity of IRAP. The assay performance was robust with Z-values ranging from 0.81 to 0.91, and the screen resulted in 23 compounds that displayed greater than 60% inhibition at a compound concentration of 10M. After hit confirmation experiments, purity analysis, and promiscuity investigations, three structurally different compounds were considered particularly interesting as starting points for the development of small-molecule-based IRAP inhibitors. After resynthesis, all three compounds confirmed low M activity and were shown to be rapidly reversible. Additional characterization included activity in a fluorescence-based orthogonal assay and in the presence of a nonionic detergent and a reducing agent, respectively. Importantly, the characterized compounds also showed inhibition of the human ortholog, prompting our further interest in these novel IRAP inhibitors.
  •  
4.
  • Llona-Minguez, Sabin, et al. (författare)
  • Discovery of the First Potent and Selective Inhibitors of Human dCTP Pyrophosphatase 1
  • 2016
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 59:3, s. 1140-1148
  • Tidskriftsartikel (refereegranskat)abstract
    • The dCTPase pyrophosphatase 1 (dCTPase) regulates the intracellular nucleotide pool through hydrolytic degradation of canonical and noncanonical nucleotide triphosphates (dNTPs). dCTPase is highly expressed in multiple carcinomas and is associated with cancer cell sternness. Here we report on the development of the first potent and selective dCTPase inhibitors that enhance the cytotoxic effect of cytidine analogues in leukemia cells. Boronate 30 displays a promising in vitro ADME profile, including plasma and mouse microsomal half-lives, aqueous solubility, cell permeability and CYP inhibition, deeming it a suitable compound for in vivo studies.
  •  
5.
  • Llona-Minguez, Sabin, et al. (författare)
  • Diverse heterocyclic scaffolds as dCTP pyrophosphatase 1 inhibitors. Part 2 : Pyridone- and pyrimidinone-derived systems
  • 2017
  • Ingår i: Bioorganic & Medicinal Chemistry Letters. - : Elsevier BV. - 0960-894X .- 1464-3405. ; 27:15, s. 3219-3225
  • Tidskriftsartikel (refereegranskat)abstract
    • Two screening campaigns using commercial (Chembridge DiverSET) and proprietary (Chemical Biology Consortium Sweden, CBCS) compound libraries, revealed a number of pyridone- and pyrimidinone-derived systems as inhibitors of the human dCTP pyrophosphatase 1 (dCTPase). In this letter, we present their preliminary structure-activity-relationships (SAR) and ligand efficiency scores (LE and LLE).
  •  
6.
  • Llona-Minguez, Sabin, et al. (författare)
  • Identification of Triazolothiadiazoles as Potent Inhibitors of the dCTP Pyrophosphatase 1
  • 2017
  • Ingår i: Journal of Medicinal Chemistry. - : American Chemical Society (ACS). - 0022-2623 .- 1520-4804. ; 60:5, s. 2148-2154
  • Tidskriftsartikel (refereegranskat)abstract
    • The dCTP pyrophosphatase 1 (dCTPase) is involved in the regulation of the cellular dNTP pool and has been linked to cancer progression. Here we report on the discovery of a series of 3,6-disubstituted triazolothiadiazoles as potent dCTPase inhibitors. Compounds 16 and 18 display good correlation between enzymatic inhibition and target engagement, together with efficacy in a cellular synergy model, deeming them as a promising starting point for hit -to-lead development.
  •  
7.
  • Llona-Minguez, Sabin, et al. (författare)
  • Novel spirocyclic systems via multicomponent aza-Diels-Alder reaction
  • 2017
  • Ingår i: Organic and biomolecular chemistry. - : Royal Society of Chemistry (RSC). - 1477-0520 .- 1477-0539. ; 15:37, s. 7758-7764
  • Tidskriftsartikel (refereegranskat)abstract
    • Here we present a two-step diastereoselective methodology building on a multicomponent aza-Diels-Alder reaction. Using previously unexplored cyclic ketones, heterocyclic amines and cyclopentadiene derivatives, we obtained novel spiro-heterocyclic frameworks at the interphase between drug-like molecules and natural products.
  •  
8.
  • Michel, Maurice, et al. (författare)
  • Computational and Experimental Druggability Assessment of Human DNA Glycosylases
  • 2019
  • Ingår i: ACS Omega. - : American Chemical Society (ACS). - 2470-1343. ; 4:7, s. 11642-11656
  • Tidskriftsartikel (refereegranskat)abstract
    • Due to a polar or even charged binding interface, DNA-binding proteins are considered extraordinarily difficult targets for development of small-molecule ligands and only a handful of proteins have been targeted successfully to date. Recently, however, it has been shown that development of selective and efficient inhibitors of 8-oxoguanine DNA glycosylase is possible. Here, we describe the initial druggability assessment of DNA glycosylases in a computational setting and experimentally investigate several methods to target endonuclease VIII-like 1 (NEIL1) with small-molecule inhibitors. We find that DNA glycosylases exhibit good predicted druggability in both DNA-bound and -unbound states. Furthermore, we find catalytic sites to be highly flexible, allowing for a range of interactions and binding partners. One flexible catalytic site was rationalized for NEIL1 and further investigated experimentally using both a biochemical assay in the presence of DNA and a thermal shift assay in the absence of DNA.
  •  
9.
  • Niklasson, Mia, et al. (författare)
  • Membrane-Depolarizing Channel Blockers Induce Selective Glioma Cell Death by Impairing Nutrient Transport and Unfolded Protein/Amino Acid Responses
  • 2017
  • Ingår i: Cancer Research. - : AMER ASSOC CANCER RESEARCH. - 0008-5472 .- 1538-7445. ; 77:7, s. 1741-1752
  • Tidskriftsartikel (refereegranskat)abstract
    • Glioma-initiating cells (GIC) are considered the underlying cause of recurrences of aggressive glioblastomas, replenishing the tumor population and undermining the efficacy of conventional chemotherapy. Here we report the discovery that inhibiting T-type voltage-gated Ca2+ and KCa channels can effectively induce selective cell death of GIC and increase host survival in an orthotopic mouse model of human glioma. At present, the precise cellular pathways affected by the drugs affecting these channels are unknown. However, using cell-based assays and integrated proteomics, phosphoproteomics, and transcriptomics analyses, we identified the downstreamsignaling events these drugs affect. Changes in plasma membrane depolarization and elevated intracellular Na+, which compromised Na+-dependent nutrient transport, were documented. Deficits in nutrient deficit acted in turn to trigger the unfolded protein response and the amino acid response, leading ultimately to nutrient starvation and GIC cell death. Our results suggest new therapeutic targets to attack aggressive gliomas.
  •  
10.
  • Visnes, Torkild, et al. (författare)
  • Small-molecule inhibitor of OGG1 suppresses proinflammatory gene expression and inflammation
  • 2018
  • Ingår i: Science. - : American Association for the Advancement of Science (AAAS). - 0036-8075 .- 1095-9203. ; 362:6416, s. 834-
  • Tidskriftsartikel (refereegranskat)abstract
    • The onset of inflammation is associated with reactive oxygen species and oxidative damage to macromolecules like 7,8-dihydro-8-oxoguanine (8-oxoG) in DNA. Because 8-oxoguanine DNA glycosylase 1 (OGG1) binds 8-oxoG and because Ogg1-deficient mice are resistant to acute and systemic inflammation, we hypothesized that OGG1 inhibition may represent a strategy for the prevention and treatment of inflammation. We developed TH5487, a selective active-site inhibitor of OGG1, which hampers OGG1 binding to and repair of 8-oxoG and which is well tolerated by mice. TH5487 prevents tumor necrosis factor-alpha-induced OGG1-DNA interactions at guanine-rich promoters of proinflammatory genes. This, in turn, decreases DNA occupancy of nuclear factor kappa B and proinflammatory gene expression, resulting in decreased immune cell recruitment to mouse lungs. Thus, we present a proof of concept that targeting oxidative DNA repair can alleviate inflammatory conditions in vivo.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy