SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jensen Lasse) srt2:(2010-2014)"

Sökning: WFRF:(Jensen Lasse) > (2010-2014)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Brautigam, Lars, et al. (författare)
  • Glutaredoxin regulates vascular development by reversible glutathionylation of sirtuin 1
  • 2013
  • Ingår i: Proceedings of the National Academy of Sciences of the United States of America. - : National Academy of Sciences. - 0027-8424 .- 1091-6490. ; 110:50, s. 20057-20062
  • Tidskriftsartikel (refereegranskat)abstract
    • Embryonic development depends on complex and precisely orchestrated signaling pathways including specific reduction/oxidation cascades. Oxidoreductases of the thioredoxin family are key players conveying redox signals through reversible posttranslational modifications of protein thiols. The importance of this protein family during embryogenesis has recently been exemplified for glutaredoxin 2, a vertebrate-specific glutathione-disulfide oxidoreductase with a critical role for embryonic brain development. Here, we discovered an essential function of glutaredoxin 2 during vascular development. Confocal microscopy and time-lapse studies based on two-photon microscopy revealed that morpholino-based knockdown of glutaredoxin 2 in zebrafish, a model organism to study vertebrate embryogenesis, resulted in a delayed and disordered blood vessel network. We were able to show that formation of a functional vascular system requires glutaredoxin 2-dependent reversible S-glutathionylation of the NAD(+)-dependent protein deacetylase sirtuin 1. Using mass spectrometry, we identified a cysteine residue in the conserved catalytic region of sirtuin 1 as target for glutaredoxin 2-specific deglutathionylation. Thereby, glutaredoxin 2-mediated redox regulation controls enzymatic activity of sirtuin 1, a mechanism we found to be conserved between zebrafish and humans. These results link S-glutathionylation to vertebrate development and successful embryonic angiogenesis.
  •  
2.
  • Cao, Ziquan, et al. (författare)
  • Hypoxia-induced retinopathy model in adult zebrafish
  • 2010
  • Ingår i: Nature Protocols. - : Nature Publishing Group. - 1754-2189 .- 1750-2799. ; 5:12, s. 1903-1910
  • Tidskriftsartikel (refereegranskat)abstract
    • Hypoxia-induced vascular responses, including angiogenesis, vascular remodeling and vascular leakage, significantly contribute to the onset, development and progression of retinopathy. However, until recently there were no appropriate animal disease models recapitulating adult retinopathy available. In this article, we describe protocols that create hypoxia-induced retinopathy in adult zebrafish. Adult fli1: EGFP zebrafish are placed in hypoxic water for 3-10 d and retinal neovascularization is analyzed using confocal microscopy. It usually takes 11 d to obtain conclusive results using the hypoxia-induced retinopathy model in adult zebrafish. This model provides a unique opportunity to study kinetically the development of retinopathy in adult animals using noninvasive protocols and to assess therapeutic efficacy of orally active antiangiogenic drugs.
  •  
3.
  • Dahl Jensen, Lasse, et al. (författare)
  • Opposing Effects of Circadian Clock Genes Bmal1 and Period2 in Regulation of VEGF-Dependent Angiogenesis in Developing Zebrafish
  • 2012
  • Ingår i: Cell Reports. - : Elsevier (Cell Press). - 2211-1247. ; 2:2, s. 231-241
  • Tidskriftsartikel (refereegranskat)abstract
    • Molecular mechanisms underlying circadian-regulated physiological processes remain largely unknown. Here, we show that disruption of the circadian clock by both constant exposure to light and genetic manipulation of key genes in zebrafish led to impaired developmental angiogenesis. A bmal1-specific morpholino inhibited developmental angiogenesis in zebrafish embryos without causing obvious nonvascular phenotypes. Conversely, a period2 morpholino accelerated angiogenic vessel growth, suggesting that Bmal1 and Period2 display opposing angiogenic effects. Using a promoter-reporter system consisting of various deleted vegf-promoter mutants, we show that Bmal1 directly binds to and activates the vegf promoter via E-boxes. Additionally, we provide evidence that knockdown of Bmal1 leads to impaired Notch-inhibition-induced vascular sprouting. These results shed mechanistic insight on the role of the circadian clock in regulation of developmental angiogenesis, and our findings may be reasonably extended to other types of physiological or pathological angiogenesis.
  •  
4.
  • Dahl Jensen, Lasse, et al. (författare)
  • Zebrafish Models to Study Hypoxia-Induced Pathological Angiogenesis in Malignant and Nonmalignant Diseases
  • 2011
  • Ingår i: Birth Defects Research. Part C: Embryo Today Reviews. - : John Wiley and Sons.Ltd. - 1542-975X .- 1542-9768. ; 93:2, s. 182-193
  • Forskningsöversikt (refereegranskat)abstract
    • Most in vivo preclinical disease models are based on mouse and other mammalian systems. However, these rodent-based model systems have considerable limitations to recapitulate clinical situations in human patients. Zebrafish have been widely used to study embryonic development, behavior, tissue regeneration, and genetic defects. Additionally, zebrafish also provides an opportunity to screen chemical compounds that target a specific cell population for drug development. Owing to the availability of various genetically manipulated strains of zebrafish, immune privilege during early embryonic development, transparency of the embryos, and easy and precise setup of hypoxia equipment, we have developed several disease models in both embryonic and adult zebrafish, focusing on studying the role of angiogenesis in pathological settings. These zebrafish disease models are complementary to the existing mouse models, allowing us to study clinically relevant processes in cancer and nonmalignant diseases, which otherwise would be difficult to study in mice. For example, dissemination and invasion of single human or mouse tumor cells from the primary site in association with tumor angiogenesis can be studied under normoxia or hypoxia in zebrafish embryos. Hypoxia-induced retinopathy in the adult zebrafish recapitulates the clinical situation of retinopathy development in diabetic patients or age-related macular degeneration. These zebrafish disease models offer exciting opportunities to understand the mechanisms of disease development, progression, and development of more effective drugs for therapeutic intervention.
  •  
5.
  • Fernandez-Barral, Asuncion, et al. (författare)
  • Regulatory and Functional Connection of Microphthalmia-Associated Transcription Factor and Anti-Metastatic Pigment Epithelium Derived Factor in Melanoma
  • 2014
  • Ingår i: Neoplasia. - : Neoplasia. - 1522-8002 .- 1476-5586. ; 16:6, s. 529-542
  • Tidskriftsartikel (refereegranskat)abstract
    • Pigment epithelium-derived factor (PEDF), a member of the serine protease inhibitor superfamily, has potent anti-metastatic effects in cutaneous melanoma through its direct actions on endothelial and melanoma cells. Here we show that PEDF expression positively correlates with microphthalmia-associated transcription factor ( MITF) in melanoma cell lines and human samples. High PEDF and MITF expression is characteristic of low aggressive melanomas classified according to molecular and pathological criteria, whereas both factors are decreased in senescent melanocytes and naevi. Importantly, MITF silencing down-regulates PEDF expression in melanoma cell lines and primary melanocytes, suggesting that the correlation in the expression reflects a causal relationship. In agreement, analysis of Chromatin immunoprecipitation coupled to high throughput sequencing (ChIP-seq) data sets revealed three MITF binding regions within the first intron of SERPINF1, and reporter assays demonstrated that the binding of MITF to these regions is sufficient to drive transcription. Finally, we demonstrate that exogenous PEDF expression efficiently halts in vitro migration and invasion, as well as in vivo dissemination of melanoma cells induced by MITF silencing. In summary, these results identify PEDF as a novel transcriptional target of MITF and support a relevant functional role for the MITF-PEDF axis in the biology of melanoma.
  •  
6.
  • Hosaka, Kayoko, et al. (författare)
  • Tumour PDGF-BB expression levels determine dual effects of anti-PDGF drugs on vascular remodelling and metastasis
  • 2013
  • Ingår i: Nature Communications. - : Nature Publishing Group: Nature Communications. - 2041-1723. ; 4:2129
  • Tidskriftsartikel (refereegranskat)abstract
    • Anti-platelet-derived growth factor (PDGF) drugs are routinely used in front-line therapy for the treatment of various cancers, but the molecular mechanism underlying their dose-dependent impact on vascular remodelling remains poorly understood. Here we show that anti-PDGF drugs significantly inhibit tumour growth and metastasis in high PDGF-BB-producing tumours by preventing pericyte loss and vascular permeability, whereas they promote tumour cell dissemination and metastasis in PDGF-BB-low-producing or PDGF-BB-negative tumours by ablating pericytes from tumour vessels. We show that this opposing effect is due to PDGF-beta signalling in pericytes. Persistent exposure of pericytes to PDGF-BB markedly downregulates PDGF-beta and inactivation of the PDGF-beta signalling decreases integrin alpha 1 beta 1 levels, which impairs pericyte adhesion to extracellular matrix components in blood vessels. Our data suggest that tumour PDGF-BB levels may serve as a biomarker for selection of tumour-bearing hosts for anti-PDGF therapy and unsupervised use of anti-PDGF drugs could potentially promote tumour invasion and metastasis.
  •  
7.
  • Jensen, Lasse Dahl, et al. (författare)
  • Circadian angiogenesis
  • 2014
  • Ingår i: Biomolecular concepts. - : Walter de Gruyter GmbH. - 1868-503X .- 1868-5021. ; 5:3, s. 245-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Daily rhythms of light/darkness, activity/rest and feeding/fasting are important in human physiology and their disruption (for example by frequent changes between day and night shifts) increases the risk of disease. Many of the diseases found to be associated with such disrupted circadian lifestyles, including cancer, cardiovascular diseases, metabolic disorders and neurological diseases, depend on pathological de-regulation of angiogenesis, suggesting that disrupting the circadian clock will impair the physiological regulation of angiogenesis leading to development and progression of these diseases. Today there is little known regarding circadian regulation of pathological angiogenesis but there is some evidence that supports both direct and indirect regulation of angiogenic factors by the cellular circadian clock machinery, as well as by circulating circadian factors, important for coordinating circadian rhythms in the organism. Through highlighting recent advances both in pre-clinical and clinical research on various diseases including cancer, cardiovascular disorders and obesity, we will here present an overview of the available knowledge on the importance of circadian regulation of angiogenesis and discuss how the circadian clock may provide alternative targets for pro- or anti-angiogenic therapy in the future.
  •  
8.
  • Jensen, Lasse Dahl, et al. (författare)
  • Clock controls angiogenesis
  • 2013
  • Ingår i: Cell Cycle. - : Landes Bioscience. - 1538-4101 .- 1551-4005. ; 12:3, s. 405-408
  • Tidskriftsartikel (refereegranskat)abstract
    • Circadian rhythms control multiple physiological and pathological processes, including embryonic development in mammals and development of various human diseases. We have recently, in a developing zebrafish embryonic model, discovered that the circadian oscillation controls developmental angiogenesis. Disruption of crucial circadian regulatory genes, including Bmal1 and Period2, results in marked impairment or enhancement of vascular development in zebrafish. At the molecular level, we show that the circadian regulator Bmal1 directly targets the promoter region of the vegf gene in zebrafish, leading to an elevated expression of VEGF. These findings can reasonably be extended to developmental angiogenesis in mammals and even pathological angiogenesis in humans. Thus, our findings, for the first time, shed new light on mechanisms that underlie circadian clock-regulated angiogenesis.
  •  
9.
  • Jensen, Lasse Dahl Ejby (författare)
  • Mechanisms of malignant and non-malignant angiogenesis using zebrafish models
  • 2010
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Pathological angiogenesis significantly contribute to the onset, development and progression of most common and severe human diseases including cancer, metastatic disease, cardiovascular disease, age-related macular degeneration, diabetic retinopathy and retinopathy of prematurity. Under these pathological conditions, tissue hypoxia often acts as a trigger to switch on angiogenesis. However, there has been lacking non-invasive and clinically relevant animal models that allow us to study mechanisms of human diseases. Zebrafish, as a complementary animal model to mice, is a highly genetically and pharmacologically tractable vertebrate which is easily visualized during development. Zebrafish offers a unique opportunity to study angiogenesis under hypoxia. This thesis describes development and characterization of four novel zebrafish models in relation to hypoxia-induced angiogenesis, vascular and tumor pathology. Using these models, we demonstrate that hypoxia plays a causal role in development of retinopathy and cancer cell metastasis and thus provide important insights needed for the development of therapeutic approaches aimed at interfering with these processes. In paper I, we showed that hypoxia could induce neovascular retinopathy in zebrafish and this model is highly relevant to clinical retinopathy caused by diabetes. This zebrafish retinopathy model also allows us study the therapeutic potential of various antiangiogenic agents. In paper II, we demonstrate a novel principle that regulates blood perfusion in lymphatics as an effective defense against tissue hypoxia in zebrafish and kryptopterus bicirrhis. The arterial-lymphatic shunt is controlled by nitric oxide and the implication of this work is that NO-induced lymphatic perfusion might facilitate tumor cell spread from the blood stream into the lymphatic system. In paper III, we take advantage of the transparent nature of zebrafish embryos and availability of the transgenic strain fli1:EGFP to develop a zebrafish metastasis model. Using this model, we are the first to study the role of hypoxia in relation to angiogenesis in facilitating tumor cell dissemination, invasion and metastasis. To the best of our knowledge, this is the first animal model that allows scientists to study the early events of metastasis at a single cell level. In paper IV, We show that PI3 kinase is a key signaling component that mediates angiogenesis in the developing embryonic retina and in the regenerating adult fins. In conclusion, development of these zebrafish disease models have paved new avenues for studying mechanisms of pathological angiogenesis in malignant and non malignant diseases and offers unique opportunities for assessment of therapeutic potentials of known and novel drugs against these most common and lethal diseases.
  •  
10.
  • Nielsen, Glen, et al. (författare)
  • Health promotion : The impact of beliefs of health benefits, social relations and enjoyment on exercise continuation
  • 2014
  • Ingår i: Scandinavian Journal of Medicine and Science in Sports. - Chichester : Wiley-Blackwell. - 0905-7188 .- 1600-0838. ; 24:Suppl. 1, s. 66-75
  • Tidskriftsartikel (refereegranskat)abstract
    • The aim of this study was to explore how and why participants in structured exercise intervention programs continue or stop exercising after the program is finished. We conducted four focus group interviews with four groups of middle-aged and elderly men (total n=28) who had participated in exercise interventions involving playing either a team sport (football) or a more individually focused activity (spinning and crossfit). Our results show that different social, organizational and material structures inherent in the different activities shape the subjects' enjoyment of exercise participation, as well as their intention and ability to continue being active. In conclusion, team sport activities seem to be intrinsically motivating to the participants through positive social interaction and play. They are therefore more likely to result in exercise continuation than activities that rely primarily on extrinsic motivation such as the expectation of improved health and well-being. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy