SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jin Charlotte) srt2:(2005-2009)"

Sökning: WFRF:(Jin Charlotte) > (2005-2009)

  • Resultat 1-10 av 10
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chung, C M, et al. (författare)
  • Amplification and overexpression of Aurora kinase A (AURKA) in immortalized human ovarian epithelial (HOSE) cells
  • 2005
  • Ingår i: Molecular Carcinogenesis. - : Wiley. - 1098-2744 .- 0899-1987. ; 43:3, s. 165-174
  • Tidskriftsartikel (refereegranskat)abstract
    • Immortalization is an early and essential step of human carcinogenesis. Amplification of chromosome 20q has been shown to be a common event in immortalized cells and cancers. We have previously reported that gain and amplification of chromosome 20q is a non-random and common event in immortalized human ovarian surface epithelial (HOSE) cells. The chromosome 20q harbors genes including TGIF2 (20q11.2-q12), AIB1 (20q12), PTPN1 (20q13.1), ZNF217 (20q13.2), and AURKA (20q13.2-q13.3), which were previously reported to be amplified and overexpressed in ovarian cancers. Some of these genes may be involved in immortalization of HOSE cells and represent crucial premalignant changes in ovarian surface epithelium. Investigation of the involvement of these genes was examined in four pairs of pre-crisis (preimmortalized) and post-crisis (immortalized) HOSE cells. Overexpression of AURKA (Aurora kinase A), also known as BTAK and STK15, by both real time-quantitative polymerase chain reaction (RT-QPCR) and Western blotting was detected in all the four immortalized HOSE cells examined while overexpression of AIB1 and ZNF217 was observed in two of four immortalized HOSE cells examined. Overexpression of TGIF2 and PTPN1 was not significant in our immortalized HOSE cell systems. The degree of overexpression of AURKA was shown to be closely associated with the amplification of chromosome 20q in immortalized HOSE cells. Fluorescence in situ hybridization (FISH) with labeled Pi artificial clone (PAC) confirmed the amplification of the chromosomal region (20q13.2-13.3) where AURKA resides. DNA amplification of AURKA was also confirmed using semi-quantitative PCR. Our study showed that amplification and overexpression of AURKA is a common and significant event during immortalization of HOSE cells and may represent an important premalignant change in ovarian carcinogenesis.
  •  
2.
  • Gisselsson Nord, David, et al. (författare)
  • Telomere-mediated mitotic disturbances in immortalized ovarian epithelial cells reproduce chromosomal losses and breakpoints from ovarian carcinoma
  • 2005
  • Ingår i: Genes, Chromosomes and Cancer. - : Wiley. - 1045-2257. ; 42:1, s. 22-33
  • Tidskriftsartikel (refereegranskat)abstract
    • Ovarian carcinomas (OCs) often exhibit highly complex cytogenetic changes. Abnormal chromosome segregation at mitosis is one potential mechanism for genomic rearrangements in tumors. In this study, OCs were demonstrated to have dysfunctional short telomeres, anaphase bridging, and multipolar mitoses with supernumerary centrosomes. When normal human ovarian surface epithelial (HOSE) cells were transfected with human papilloma virus 16 e6/e7 genes and subsequently driven into telomere crisis, the same set of mitotic disturbances occurred in a distinct sequence, initiated by telomere dysfunction, followed by anaphase bridging, and then supernumerary centrosomes and multipolar mitoses. The anaphase bridges resolved either by kinetochore-spindle detachment, corresponding to whole-chromosome losses in the HOSE karyotypes, or by extensive fragmentation of intercentromeric DNA sequences, corresponding to a high frequency of pericentromeric rearrangements. At later passages, the high degree of instability at telomere crisis was moderated by telomerase expression and centrosome coalescence, ultimately leading to a level of mitotic instability that was highly similar to that in OC cell lines and to complex karyotypes that were similar to those observed in high-grade OCs. This suggests that a significant proportion of the structural chromosome changes and genomic losses in OC are caused by a specific sequence of mitotic disturbances triggered by telomere crisis. That the model did not produce any of the whole-chromosome gains observed in OC indicates that these changes develop through a different mechanism.
  •  
3.
  • Jin, Charlotte, et al. (författare)
  • Cytogenetic abnormalities in 106 oral squamous cell carcinomas
  • 2006
  • Ingår i: Cancer Genetics and Cytogenetics. - : Elsevier BV. - 0165-4608. ; 164:1, s. 44-53
  • Tidskriftsartikel (refereegranskat)abstract
    • We report karyotypic features of 106 short-term cultured oral squamous cell carcinomas (SCC), 51 new and 55 previously reported cases, with clonal chromosome aberrations. The major cytogenetic findings were as follows: simple karyotypic changes were present in 38 cases (36%) and 68 tumors (64%) displayed complex karyotypes. The most common numerical changes were +7, +8, +9, +16, +18, +20, and -4, -10, -13, -14, -18, -19, -21, -22, and -Y. Structural rearrangements frequently (43% of the breaks) affected the centromeric regions, resulting in the formation of isochromosomes and whole-arm translocations. Among the recurrent structural aberrations identified, the most common were i(1q), i(3q), i(5p), i(8q), del(16)(q22), and hsr. With the exception of chromosomal band 11q13, which was involved in 25 tumors, only centromeric or near-centromeric bands were commonly involved: 3p11 approximately q11 (59 cases), 8p11 approximately q11 (57), 1p11 approximately q11 (48), 13p11 approximately q11 (46), 5p11 approximately q11 (41), 14p11 approximately q11 (41), and 15p11 approximately q11 (37). Losses of genetic material dominated over gains. The most frequent imbalances included loss of 2q33 approximately qter, 3p, 4p, 6q, 8p, 10p, 11q, 13p, 14p, and 15p, and chromosomes 18, 21, 22, and Y, and gain of chromosomes 7 and 20, 8q, and 11q13. No major karyotypic differences could be discerned between the present series of oral SCC and a previously reported series of laryngeal SCC, indicating that common genetic pathways are involved in the initiation and progression of SCC irrespective of site of origin.
  •  
4.
  • Jin, Charlotte, et al. (författare)
  • Increased sensitivity to bleomycin in upper aerodigestive tract mucosa of head and neck squamous cell carcinoma patients.
  • 2008
  • Ingår i: Mutation Research - Genetic Toxicology and Environmental Mutagenesis. - : Elsevier BV. - 1383-5718. ; 652, s. 30-37
  • Tidskriftsartikel (refereegranskat)abstract
    • Previous studies on lymphocytes have suggested that patients with head and neck squamous cell carcinoma (HNSCC) have an increased susceptibility for chromosomal damage induced by bleomycin, a known radiomimetic mutagen. However, it has so far not been possible to study whether this genetic instability is present also in the epithelial component of the upper aerodigestive tract mucosa, the tissue from which HNSCC originates. In the present study, we have successfully cultured epithelial cells and fibroblasts isolated from non-neoplastic mucosa samples of 30 HNSCC patients and 56 controls. All cell cultures were exposed to bleomycin and chromosome instability was assessed by analysis of chromosome breakage in cells harvested after 2h of exposure and subsequent removal of bleomycin. Furthermore, the status of the fragile histidine triad gene (FHIT) in chromosome band 3p14.2 was studied by fluorescence in situ hybridization (FISH) in epithelial cells that had been cultured after removal of bleomycin. Chromosomal damage, in the form of chromosomal breaks and gaps, was seen in all cell cultures harvested 2h after exposure to bleomycin. In epithelial cells, the frequency of chromosome breakage was significantly higher among HNSCC patients than among controls [mean breaks per cell (b/c) 1.02 vs. 0.77, p=0.02]. When subdivided according to smoking status, age, and sex, a significantly higher frequency of chromosome breakage was still found in HNSCC patients (smokers, p=0.01, age
  •  
5.
  • Jin, Charlotte, et al. (författare)
  • Molecular cytogenetic characterization of the 11q13 amplicon in head and neck squamous cell carcinoma.
  • 2006
  • Ingår i: Cytogenetic and Genome Research. - : S. Karger AG. - 1424-859X .- 1424-8581. ; 115:2, s. 99-106
  • Tidskriftsartikel (refereegranskat)abstract
    • Amplification of 11q13 DNA sequences and overexpression of CCND1 are common findings in head and neck squamous cell carcinoma (HNSCC), identified in about 30% of the cases. However, little is known about initiation of the amplification and the organization of the amplicon. In order to study the structure of the amplicon in more detail and to learn more about the mechanisms involved in its initiation, prometaphase, metaphase, and anaphase fluorescence in situ hybridization (FISH) with 40 BAC clones spanning a 16-Mb region in chromosome bands 11q12.2 to 11q13.5 was performed in nine HNSCC cell lines with homogeneously staining regions. FISH analysis showed that the size of the amplicon varied among the nine cell lines, the smallest being 2.12 Mb and the largest 8.97 Mb. The smallest overlapping region of amplification was approximately 1.61 Mb, covering the region from BAC 729E14 to BAC 102B19. This region contained several genes previously shown to be amplified and overexpressed in HNSCC, including CCDN1, CTTN, SHANK2, and ORAOV1. The cell lines were also used to study the internal structure of the amplicon. Various patterns of amplified DNA sequences within the amplicon were found among the nine cell lines. Even within the same cell line, different amplicon structures could be found in different cell populations, indicating that the mechanisms involved in the development of the amplicons in HNSCC were more complex than previously assumed. The frequent finding of inverted repeats within the amplicons, however, suggests that breakage-fusion-bridge cycles are important in the initiation, but the fact that such repeats constituted only small parts of the amplicons indicate that they are further rearranged during tumor progression. Copyright (c) 2006 S. Karger AG, Basel.
  •  
6.
  •  
7.
  •  
8.
  • Zhang, H, et al. (författare)
  • Cytogenetic aberrations in immortalization of esophageal epithelial cells
  • 2006
  • Ingår i: Cancer Genetics and Cytogenetics. - : Elsevier BV. - 0165-4608. ; 165:1, s. 25-35
  • Tidskriftsartikel (refereegranskat)abstract
    • To define the early cytogenetic events important in esophageal carcinogenesis, we immortalized normal esophageal epithelial cells by overexpression of human papillomavirus type 16 E6/E7 (HPV16E6/E7) and human telomerase reverse transcriptase (hTERT), and characterized the chromosomal abnormalities serially before and after Cellular immortalizaiton. During crisis. most cells had simple nonclonal karyotypic changes with cytogenetic divergence. Mitotically unstable chromosomes (i.e., telomere association and dicentric chromosomes) were the most common aberrations. After crisis, the karyotypic patterns were more convergent with nonrandom clonal changes. A few clones dominated the culture. Gain of chromosome 20q was consistently observed in four HPVE6/E7 immortalized esophageal lines, whereas amplification of chromosome 5q was preferentially found in hTERT immortalized cells. In addition, chromosomal aberrations of immortalized cells, including del(3p) and centromere rearrangements, were similar to those observed in esophageal cancer. Furthermore, in E6/E7-expressing cells, the frequency of negative telomere termini and anaphase bridges were high during crisis and low after crisis. These findings suggested that telomere dysfunction might be an important cause of cellular crisis, and the resultant chromosomal aberrations, mainly amplification of chromosome 20q or 5q, might be early genetic events required in esophageal cell immortalization. These alterations might be valuable models for further study of molecular mechanisms contributing to esophageal carcinogenesis. (c) 2006 Elsevier Inc. All rights reserved.
  •  
9.
  • Zhang, Hao, et al. (författare)
  • Papillomavirus type 16 E6/E7 and human telomerase reverse transcriptase in esophageal cell immortalization and early transformation
  • 2007
  • Ingår i: Cancer Letters. - : Elsevier BV. - 1872-7980 .- 0304-3835. ; 245:1-2, s. 184-194
  • Tidskriftsartikel (refereegranskat)abstract
    • Infection with high-risk human papillomavirus (HPV) has been implicated in the pathogenesis of esophageal squamous cell carcinoma, and up-regulation of telomerase in esophageal adenocarcinoma. We immortalized normal esophageal epithelial cells by over-expression of the HPV16 E6/E7 and human telomerase reverse transcriptase (hTERT) genes. HPV16 E6/E7-induced immortalization was accompanied by reduced RB and p53, but increased p16 and p21, protein expression. hTERT-immortalized cells had unaffected RB and p53, but significantly decreased p16 and p21, protein expression. Aurora-A protein was also upregulated in E6E7 immortalized cells, and to a less extent in hTERT immortalized cells. Fluorescence in situ hybridization showed that the Aurora-A gene locus was amplified in E6E7 immortalized cells, which might account in part for the Aurora-A overexpression. These molecular changes led to an abrogation of the G2 checkpoint. E6E7 and hTERT immortalized esophageal cells recapitulated many of the molecular changes observed in esophageal carcinomas, where RB and p53 are frequently downregulated. However, down-regulation of p16 and p21 occurred frequently in esophageal cancer, owing to aberrant gene promoter methylation. We showed in the immortalized cells that aberrant methylation had not yet set in, suggesting that promoter methylation might not be necessary for cellular immortalization. In addition to supporting the role of HPV and telomerase in esophageal carcinogenesis, our cell lines may also be useful in vitro models for further studies of esophageal carcinogenesis.
  •  
10.
  • Birney, Ewan, et al. (författare)
  • Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project
  • 2007
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 447:7146, s. 799-816
  • Tidskriftsartikel (refereegranskat)abstract
    • We report the generation and analysis of functional data from multiple, diverse experiments performed on a targeted 1% of the human genome as part of the pilot phase of the ENCODE Project. These data have been further integrated and augmented by a number of evolutionary and computational analyses. Together, our results advance the collective knowledge about human genome function in several major areas. First, our studies provide convincing evidence that the genome is pervasively transcribed, such that the majority of its bases can be found in primary transcripts, including non-protein-coding transcripts, and those that extensively overlap one another. Second, systematic examination of transcriptional regulation has yielded new understanding about transcription start sites, including their relationship to specific regulatory sequences and features of chromatin accessibility and histone modification. Third, a more sophisticated view of chromatin structure has emerged, including its inter-relationship with DNA replication and transcriptional regulation. Finally, integration of these new sources of information, in particular with respect to mammalian evolution based on inter- and intra-species sequence comparisons, has yielded new mechanistic and evolutionary insights concerning the functional landscape of the human genome. Together, these studies are defining a path for pursuit of a more comprehensive characterization of human genome function.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 10

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy