SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jing Xingjun) srt2:(2001-2004)"

Sökning: WFRF:(Jing Xingjun) > (2001-2004)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Eliasson, Lena, et al. (författare)
  • SUR1 Regulates PKA-independent cAMP-induced Granule Priming in Mouse Pancreatic B-cells.
  • 2003
  • Ingår i: Journal of General Physiology. - : Rockefeller University Press. - 0022-1295 .- 1540-7748. ; 121:3, s. 181-197
  • Tidskriftsartikel (refereegranskat)abstract
    • Measurements of membrane capacitance were applied to dissect the cellular mechanisms underlying PKA-dependent and -independent stimulation of insulin secretion by cyclic AMP. Whereas the PKA-independent (Rp-cAMPS–insensitive) component correlated with a rapid increase in membrane capacitance of ~80 fF that plateaued within ~200 ms, the PKA-dependent component became prominent during depolarizations >450 ms. The PKA-dependent and -independent components of cAMP-stimulated exocytosis differed with regard to cAMP concentration dependence; the Kd values were 6 and 29 µM for the PKA-dependent and -independent mechanisms, respectively. The ability of cAMP to elicit exocytosis independently of PKA activation was mimicked by the selective cAMP-GEFII agonist 8CPT-2Me-cAMP. Moreover, treatment of B-cells with antisense oligodeoxynucleotides against cAMP-GEFII resulted in partial (50%) suppression of PKA-independent exocytosis. Surprisingly, B-cells in islets isolated from SUR1-deficient mice (SUR1-/- mice) lacked the PKA-independent component of exocytosis. Measurements of insulin release in response to GLP-1 stimulation in isolated islets from SUR1-/- mice confirmed the complete loss of the PKA-independent component. This was not attributable to a reduced capacity of GLP-1 to elevate intracellular cAMP but instead associated with the inability of cAMP to stimulate influx of Cl- into the granules, a step important for granule priming. We conclude that the role of SUR1 in the B cell extends beyond being a subunit of the plasma membrane KATP-channel and that it also plays an unexpected but important role in the cAMP-dependent regulation of Ca2+-induced exocytosis.
  •  
2.
  • Härndahl, Linda, et al. (författare)
  • Important role of phosphodiesterase 3B for the stimulatory action of cAMP on pancreatic beta -cell exocytosis and release of insulin.
  • 2002
  • Ingår i: Journal of Biological Chemistry. - 1083-351X. ; 277:40, s. 37446-37455
  • Tidskriftsartikel (refereegranskat)abstract
    • Cyclic AMP potentiates glucose-stimulated insulin release and mediates the stimulatory effects of hormones such as glucagon-like peptide 1 (GLP-1) on pancreatic b-cells. By inhibition of cAMP-degrading phosphodiesterase (PDE) and, in particular, selective inhibition of PDE3 activity, stimulatory effects on insulin secretion have been observed. Molecular and functional information on b-cell PDE3 is, however, scarce. To provide such information, we have studied the specific effects of the PDE3B isoform by adenovirus-mediated overexpression. In rat islets and rat insulinoma cells, approximate 10-fold overexpression of PDE3B was accompanied by a 6-8-fold increase in membrane-associated PDE3B activity. The cAMP concentration was significantly lowered in transduced cells (INS-1(832/13), and insulin secretion in response to stimulation with high glucose (11.1 mM) was reduced by 40% (islets) and 50% (INS-1). Further, the ability of GLP-1 (100 nM) to augment glucose-stimulated insulin secretion was inhibited by approximately 30% (islets) and 70% (INS-1). Accordingly, when stimulating with cAMP, a substantial decrease (65%) in exocytotic capacity was demonstrated in patch-clamped single b-cells. In untransduced insulinoma cells, application of the PDE3-selective inhibitor OPC3911 (10 mM) was shown to increase glucose-stimulated insulin release as well as cAMP-enhanced exocytosis. The findings suggest a significant role of PDE3B as an important regulator of insulin secretory processes.
  •  
3.
  •  
4.
  • Rosengren, Anders, et al. (författare)
  • Glucose dependence of insulinotropic actions of pituitary adenylate cyclase-activating polypeptide in insulin-secreting INS-1 cells.
  • 2002
  • Ingår i: Pflügers Archiv. - : Springer Science and Business Media LLC. - 0031-6768. ; 444:4, s. 556-567
  • Tidskriftsartikel (refereegranskat)abstract
    • The cAMP-elevating pituitary adenylate cyclase-activating polypeptide (PACAP) stimulates insulin release in pancreatic B-cells. Here, we have investigated its potentiating action in rat insulinoma INS-1 cells. In intact cells, PACAP-27 (100 nM) stimulated glucose-induced insulin secretion by >60%. Using the patch-clamp technique with single-cell exocytosis monitored as increases in cell capacitance, we observed that at 10 mM and 20 mM extracellular glucose, PACAP-27 acted mainly by a >50% enhancement of depolarization-elicited Ca(2+) entry, whereas at low (3 mM) glucose, the predominant effect of the peptide was a twofold increase in Ca(2+) sensitivity of insulin exocytosis. The latter effect was mimicked by glucose itself in a dose-dependent fashion. PACAP-27 exerts a prolonged effect on insulin secretion that is dissociated from changes of cytoplasmic cAMP. Whereas an elevation of cellular cAMP content (135%) could be observed 2 min after addition of PACAP-27, after 30 min preincubation with the peptide, cAMP concentrations were not different from basal. Yet, such pretreatment with PACAP-27 stimulated subsequent insulin release by congruent with60%. This sustained action is likely to reflect an increased degree of protein-kinase-A-dependent phosphorylation, and inhibitors of the kinase largely prevented the PACAP-mediated effects.
  •  
5.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy