SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johannsen V. K.) srt2:(2020-2023)"

Sökning: WFRF:(Johannsen V. K.) > (2020-2023)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Mercuri, E., et al. (författare)
  • Safety and effectiveness of ataluren: comparison of results from the STRIDE Registry and CINRG DMD Natural History Study
  • 2020
  • Ingår i: Journal of Comparative Effectiveness Research. - : Becaris Publishing Limited. - 2042-6305 .- 2042-6313. ; 9:5, s. 341-360
  • Tidskriftsartikel (refereegranskat)abstract
    • Aim: Strategic Targeting of Registries and International Database of Excellence (STRIDE) is an ongoing, multicenter registry providing real-world evidence regarding ataluren use in patients with nonsense mutation Duchenne muscular dystrophy (nmDMD). We examined the effectiveness of ataluren + standard of care (SoC) in the registry versus SoC alone in the Cooperative International Neuromuscular Research Group (CINRG) Duchenne Natural History Study (DNHS), DMD genotype-phenotype/-ataluren benefit correlations and ataluren safety. Patients & methods: Propensity score matching was performed to identify STRIDE and CINRG DNHS patients who were comparable in established disease progression predictors (registry cut-off date, 9 July 2018). Results & conclusion: Kaplan-Meier analyses demonstrated that ataluren + SoC significantly delayed age at loss of ambulation and age at worsening performance in timed function tests versus SoC alone (p <= 0.05). There were no DMD genotype-phenotype/ataluren benefit correlations. Ataluren was well tolerated. These results indicate that ataluren + SoC delays functional milestones of DMD progression in patients with nmDMD in routine clinical practice. ClinicalTrials.gov identifier: NCT02369731. ClinicalTrials.gov identifier: NCT02369731.
  •  
2.
  • Burrascano, S., et al. (författare)
  • Where are we now with European forest multi-taxon biodiversity and where can we head to?
  • 2023
  • Ingår i: Biological Conservation. - 0006-3207. ; 284
  • Tidskriftsartikel (refereegranskat)abstract
    • The European biodiversity and forest strategies rely on forest sustainable management (SFM) to conserve forest biodiversity. However, current sustainability assessments hardly account for direct biodiversity indicators. We focused on forest multi-taxon biodiversity to: i) gather and map the existing information; ii) identify knowledge and research gaps; iii) discuss its research potential. We established a research network to fit data on species, standing trees, lying deadwood and sampling unit description from 34 local datasets across 3591 sampling units. A total of 8724 species were represented, with the share of common and rare species varying across taxonomic classes: some included many species with several rare ones (e.g., Insecta); others (e.g., Bryopsida) were repre-sented by few common species. Tree-related structural attributes were sampled in a subset of sampling units (2889; 2356; 2309 and 1388 respectively for diameter, height, deadwood and microhabitats). Overall, multi-taxon studies are biased towards mature forests and may underrepresent the species related to other develop-mental phases. European forest compositional categories were all represented, but beech forests were over-represented as compared to thermophilous and boreal forests. Most sampling units (94%) were referred to a habitat type of conservation concern. Existing information may support European conservation and SFM stra-tegies in: (i) methodological harmonization and coordinated monitoring; (ii) definition and testing of SFM in-dicators and thresholds; (iii) data-driven assessment of the effects of environmental and management drivers on multi-taxon forest biological and functional diversity, (iv) multi-scale forest monitoring integrating in-situ and remotely sensed information.
  •  
3.
  •  
4.
  • Baumgartner, D, et al. (författare)
  • OralDisk: A Chair-Side Compatible Molecular Platform Using Whole Saliva for Monitoring Oral Health at the Dental Practice
  • 2021
  • Ingår i: Biosensors. - : MDPI AG. - 2079-6374. ; 11:11
  • Tidskriftsartikel (refereegranskat)abstract
    • Periodontitis and dental caries are two major bacterially induced, non-communicable diseases that cause the deterioration of oral health, with implications in patients’ general health. Early, precise diagnosis and personalized monitoring are essential for the efficient prevention and management of these diseases. Here, we present a disk-shaped microfluidic platform (OralDisk) compatible with chair-side use that enables analysis of non-invasively collected whole saliva samples and molecular-based detection of ten bacteria: seven periodontitis-associated (Aggregatibacter actinomycetemcomitans, Campylobacter rectus, Fusobacterium nucleatum, Prevotella intermedia, Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola) and three caries-associated (oral Lactobacilli, Streptococcus mutans, Streptococcus sobrinus). Each OralDisk test required 400 µL of homogenized whole saliva. The automated workflow included bacterial DNA extraction, purification and hydrolysis probe real-time PCR detection of the target pathogens. All reagents were pre-stored within the disk and sample-to-answer processing took < 3 h using a compact, customized processing device. A technical feasibility study (25 OralDisks) was conducted using samples from healthy, periodontitis and caries patients. The comparison of the OralDisk with a lab-based reference method revealed a ~90% agreement amongst targets detected as positive and negative. This shows the OralDisk’s potential and suitability for inclusion in larger prospective implementation studies in dental care settings.
  •  
5.
  •  
6.
  • Majchrzak, Paulina, et al. (författare)
  • Spectroscopic view of ultrafast charge carrier dynamics in single- and bilayer transition metal dichalcogenide semiconductors
  • 2021
  • Ingår i: Journal of Electron Spectroscopy and Related Phenomena. - : Elsevier BV. - 0368-2048 .- 1873-2526. ; 250
  • Tidskriftsartikel (refereegranskat)abstract
    • The quasiparticle spectra of atomically thin semiconducting transition metal dichalcogenides (TMDCs) and their response to an ultrafast optical excitation critically depend on interactions with the underlying substrate. Here, we present a comparative time- and angle-resolved photoemission spectroscopy (TR-ARPES) study of the transient electronic structure and ultrafast carrier dynamics in the single- and bilayer TMDCs MoS2 and WS2 on three different substrates: Au(111), Ag(111) and graphene/SiC. The photoexcited quasiparticle bandgaps are observed to vary over the range of 1.9-2.5 eV between our systems. The transient conduction band signals decay on a sub-50 fs timescale on the metals, signifying an efficient removal of photoinduced carriers into the bulk metallic states. On graphene, we instead observe a fast timescale on the order of 170 fs, followed by a slow dynamics for the conduction band decay in MoS2. These timescales are explained by Auger recombination involving MoS2 and in-gap defect states. In bilayer TMDCs on metals we observe a complex redistribution of excited holes along the valence band that is substantially affected by interactions with the continuum of bulk metallic states.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy