SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Karl H. Professor 1967 ) srt2:(2018)"

Sökning: WFRF:(Johansson Karl H. Professor 1967 ) > (2018)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Adaldo, Antonio (författare)
  • Event-triggered and cloud-support control of multi-robot systems
  • 2018
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • In control of multi-robot systems, the aim is to obtain a coordinated behavior through local interactions among the robots. A multi-agent system is an abstract model of a multi-robot system. In this thesis, we investigate multi-agent systems where inter-agent communication is modeled by discrete events triggered by conditions on the internal state of the agents. We consider two models of communication. In the first model, two agents exchange information directly with each other. In the second model, all information is exchanged asynchronously over a shared repository. Four contributions on control algorithms for multi-agent systems are offered in the thesis. The first contribution is an event-triggered pinning control algorithm for a network of agents with nonlinear dynamics and time-varying topology. Pinning control is a strategy to steer the behavior of the system in a desired manner by controlling only a small fraction of the agents. We express the controllability of the network in terms of an average value of the network connectivity over time, and we show that all the agents can be driven to a desired reference trajectory. The second contribution is a control algorithm for multi-agent systems where inter-agent communication is substituted with a shared remote repository hosted on a cloud. The communication between each agent and the cloud is modeled as a sequence of events scheduled recursively by the agent. We quantify the connectivity of the network and we show that it is possible to synchronize the multi-agent system to the same state trajectory, while guaranteeing that two consecutive cloud accesses by the same agent are separated by a lower-bounded time interval. The third contribution is a family of distributed controllers for coverage and surveillance tasks with a network of mobile agents with anisotropic sensing patterns. We develop an abstract model of the environment under inspection and define a measure of the coverage attained by the sensor network. We show that the network attains nondecreasing coverage, and we characterize the equilibrium configurations of the network. The fourth contribution is a distributed, cloud-supported control algorithm for inspection of 3D structures with a network of mobile sensing agents, similar to those considered in the third contribution. We develop an abstract model of the structure to inspect and quantify the degree of completion of the inspection. We demonstrate that, under the proposed algorithm, the network is guaranteed to complete the inspection in finite time. All results presented in the thesis are corroborated by numerical simulations and sometimes by experiments with aerial robotic platforms. The experiments show that the theory and methods developed in the thesis are of practical relevance.
  •  
2.
  • Iwaki, Takuya, 1986- (författare)
  • Wireless Sensor Network Scheduling and Event-based Control for Industrial Processes
  • 2018
  • Licentiatavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • Control over wireless sensor and actuator networks is of growing interest in process industry since it enables flexible design, deployment, operation, and maintenance. An important problem in industrial wireless control is how to limit the amount of information that needs to be exchanged over the network. In this thesis, network scheduling and remote control co-design is considered to address this problem.In the first part, we propose a design of an optimal network schedule for state estimation over a multi-hop wireless sensor network. We formulate an optimization problem, minimizing a linear combination of the averaged estimation error and transmission energy. A periodic network schedule is obtained, which specifies when and through which routes each sensor in the network should transmit its measurement, so that an optimal remote estimate under sensor energy consideration is achieved. We also propose some suboptimal schedules to reduce the computational load. The effectiveness of the suboptimal schedules is evaluated in numerical examples.In the second part, we propose a co-design framework for sensor scheduling, routing, and control over a multi-hop wireless sensor and actuator network. For a decoupled plant and LQG control performance, we formulate an optimization problem and show that the optimal schedule, routing, and control can be obtained locally for each control loop. In this part, we also introduce algorithms to reconfigure the schedules and routes when a link in the network is disconnected. The results are illustrated in a numerical example.In the third part, we consider event-based feedforward control from a wireless disturbance sensor. We derive stability conditions when the closed-loop system is subject to actuator saturation. Feedforward control with anti-windup compensation is introduced to reduce the effect of actuator saturation. The effectiveness of the approach is illustrated in some numerical examples.
  •  
3.
  • Teixeira, André, Associate Professor, et al. (författare)
  • Distributed Sensor and Actuator Reconfiguration for Fault-Tolerant Networked Control Systems
  • 2018
  • Ingår i: IEEE Transactions on Control of Network Systems. - : Institute of Electrical and Electronics Engineers (IEEE). - 2325-5870. ; 5:4, s. 1517-1528
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper, we address the problem of distributed reconfiguration of networked control systems upon the removal of misbehaving sensors and actuators. In particular, we consider systems with redundant sensors and actuators cooperating to recover from faults. Reconfiguration is performed while minimizing a steady-state estimation error covariance and quadratic control cost. A model-matching condition is imposed on the reconfiguration scheme. It is shown that the reconfiguration and its underlying computation can be distributed. Using an average dwell-time approach, the stability of the distributed reconfiguration scheme under finite-time termination is analyzed. The approach is illustrated in a numerical example.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy