SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Johansson Roland S) srt2:(1992-1994)"

Sökning: WFRF:(Johansson Roland S) > (1992-1994)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Edin, Benoni B, et al. (författare)
  • Independent control of human finger-tip forces at individual digits during precision lifting.
  • 1992
  • Ingår i: Journal of Physiology. - 0022-3751 .- 1469-7793. ; 450, s. 547-64
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. Subjects lifted an object with two parallel vertical grip surfaces and a low centre of gravity using the precision grip between the tips of the thumb and index finger. The friction between the object and the digits was varied independently at each digit by changing the contact surfaces between lifts. 2. With equal frictional conditions at the two grip surfaces, the finger-tip forces were about equal at the two digits, i.e. similar vertical lifting forces and grip forces were used. With different frictions, the digit touching the most slippery surface exerted less vertical lifting force than the digit in contact with the rougher surface. Thus, the safety margins against slips were similar at the two digits whether they made contact with surfaces of similar or different friction. 3. During digital nerve block, large and variable safety margins were employed, i.e. the finger-tip forces did not reflect the surface conditions. Slips occurred more frequently than under normal conditions (14% of all trials with nerve block, <5% during normal conditions), and they only occasionally elicited compensatory adjustments of the finger-tip forces and then at prolonged latencies. 4. The partitioning of the vertical lifting force between the digits was thus dependent on digital afferent inputs and resulted from active automatic regulation and not just from the mechanics of the task. 5. The safety margin employed at a particular digit was mainly determined by the frictional conditions encountered by the digit, and to a lesser degree by the surface condition at the same digit in the previous lift (anticipatory control), but was barely influenced by the surface condition at the other digit. 6. It was concluded that the finger-tip forces were independently controlled for each digit according to a 'non-slip strategy'. The findings suggest that the force distribution among the digits represents a digit-specific lower-level neural control establishing a stable grasp. This control relies on digit-specific afferent inputs and somatosensory memory information. It is apparently subordinated to a higher-level control that is related to the total vertical lifting and normal forces required by the lifting task and the relevant physical properties of the manipulated object.
  •  
2.
  • Johansson, Roland S, et al. (författare)
  • Somatosensory control of precision grip during unpredictable pulling loads. I. Changes in load force amplitude.
  • 1992
  • Ingår i: Experimental Brain Research. - 0014-4819 .- 1432-1106. ; 89:1, s. 181-191
  • Tidskriftsartikel (refereegranskat)abstract
    • In manipulating 'passive' objects, for which the physical properties are stable and therefore predictable, information essential for the adaptation of the motor output to the properties of the current object is principally based on 'anticipatory parameter control' using sensorimotor memories, i.e., an internal representation of the object's properties based on previous manipulative experiences. Somatosensory afferent signals only intervene intermittently according to an 'event driven' control policy. The present study is the first in a series concerning the control of precision grip when manipulating 'active' objects that exert unpredictable forces which cannot be adequately represented in a sensorimotor memory. Consequently, the manipulation may be more reliant on a moment-to-moment sensory control. Subjects who were prevented from seeing the hand used the precision grip to restrain a manipulandum with two parallel grip surfaces attached to a force motor which produced distally directed (pulling) loads tangential to the finger tips. The trapezoidal load profiles consisted of a loading phase (4 N/s), plateau phase and an unloading phase (4 N/s) returning the load force to zero. Three force amplitudes were delivered in an unpredictable sequence; 1 N, 2 N and 4 N. In addition, trials with higher load rate (32 N/s) at a low amplitude (0.7 N), were superimposed on various background loads. The movement of the manipulandum, the load forces and grip forces (normal to the grip surfaces) were recorded at each finger. The grip force automatically changed with the load force during the loading and unloading phases. However, the grip responses were initiated after a brief delay. The response to the loading phase was characterized by an initial fast force increase termed the 'catch-up' response, which apparently compensated for the response delay--the grip force adequately matched the current load demands by the end of the catch-up response. In ramps with longer lasting loading phases (amplitude greater than or equal to 2 N) the catch-up response was followed by a 'tracking' response, during which the grip force increased in parallel with load force and maintained an approximately constant force ratio that prevented frictional slips. The grip force during the hold phase was linearly related to the load force, with an intercept close to the grip force used prior to the loading. Likewise, the grip force responses evoked by the fast loadings superimposed on existing loads followed the same linear relationship.(ABSTRACT TRUNCATED AT 400 WORDS)
  •  
3.
  • Johansson, Roland S, et al. (författare)
  • Somatosensory control of precision grip during unpredictable pulling loads. II. Changes in load force rate.
  • 1992
  • Ingår i: Experimental Brain Research. - 0014-4819 .- 1432-1106. ; 89:1, s. 192-203
  • Tidskriftsartikel (refereegranskat)abstract
    • In the previous paper regarding the somatosensory control of the human precision grip, we concluded that the elicited automatic grip force adjustments are graded by the amplitude of the imposed loads when restraining an 'active' object subjected to unpredictable pulling forces (Johansson et al. 1992a). Using the same subjects and apparatus, the present study examines the capacity to respond to imposed load forces applied at various rates. Grip and load forces (forces normal and tangential to the grip surfaces) and the position of the object in the pulling direction (distal) were recorded. Trapezoidal load force profiles with plateau amplitudes of 2 N were delivered at the following rates of loading and unloading in an unpredictable sequence: 2 N/s, 4 N/s or 8 N/s. In addition, trials with higher load rate (32 N/s) at a low amplitude (0.7 N) were intermingled. The latencies between the start of the loading and the onset of the grip force response increased with decreasing load force rate. They were 80 +/- 9 ms, 108 +/- 13 ms, 138 +/- 27 ms and 174 +/- 39 ms for the 32, 8, 4 and 2 N/s rates, respectively. These data suggested that the grip response was elicited after a given minimum latency once a load amplitude threshold was exceeded. The amplitude of the initial rapid increase of grip force (i.e., the 'catch-up' response) was scaled by the rate of the load force, whereas its time course was similar for all load rates. This response was thus elicited as a unit, but its amplitude was graded by afferent information about the load rate arising very early during the loading. The scaling of the catch-up response was purposeful since it facilitated a rapid reconciliation of the ratio between the grip and load force to prevent slips. In that sense it apparently also compensated for the varying delays between the loading phase and the resultant grip force responses. However, modification of the catch-up response may occur during its course when the loading rate is altered prior to the grip force response or very early during the catch-up response itself. Hence, afferent information may be utilized continuously in updating the response although its motor expression may be confined to certain time contingencies. Moreover, this updating may take place after an extremely short latency (45-50 ms).
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3
Typ av publikation
tidskriftsartikel (3)
Typ av innehåll
refereegranskat (3)
Författare/redaktör
Johansson, Roland S (3)
Häger, Charlotte (2)
Riso, Ronald (2)
Westling, Göran (1)
Edin, Benoni B (1)
Bäckström, Lars (1)
Lärosäte
Umeå universitet (3)
Språk
Engelska (3)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (2)
År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy