SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(John Viju Oommen) "

Sökning: WFRF:(John Viju Oommen)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Buehler, Stefan, et al. (författare)
  • A cloud filtering method for microwave upper tropospheric humidity measurements
  • 2007
  • Ingår i: Atmospheric Chemistry And Physics. - : Copernicus GmbH. - 1680-7316 .- 1680-7324. ; 7:21, s. 5531-5542
  • Tidskriftsartikel (refereegranskat)abstract
    • The paper presents a cloud filtering method for upper tropospheric humidity (UTH) measurements at 183.31±1.00 GHz. The method uses two criteria: a viewing angle dependent threshold on the brightness temperature at 183.31±1.00 GHz, and a threshold on the brightness temperature difference between another channel and 183.31±1.00 GHz. Two different alternatives, using 183.31±3.00 GHz or 183.31±7.00 GHz as the other channel, are studied. The robustness of this cloud filtering method is demonstrated by a mid-latitudes winter case study. The paper then studies different biases on UTH climatologies. Clouds are associated with high humidity, therefore the possible dry bias introduced by cloud filtering is discussed and compared to the wet biases introduced by the clouds radiative effect if no filtering is done. This is done by means of a case study, and by means of a stochastic cloud database with representative statistics for midlatitude conditions. Both studied filter alternatives perform nearly equally well, but the alternative using 183.31±3.00 GHz as other channel is preferable, because that channel is less likely to see the Earth's surface than the one at 183.31±7.00 GHz. The consistent result of all case studies and for both filter alternatives is that both cloud wet bias and cloud filtering dry bias are modest for microwave data. The recommended strategy is to use the cloud filtered data as an estimate for the true all-sky UTH value, but retain the unfiltered data to have an estimate of the cloud induced uncertainty. The focus of the paper is on midlatitude data, since atmospheric data to test the filter for that case were readily available. The filter is expected to be applicable also to subtropical and tropical data, but should be further validated with case studies similar to the one presented here for those cases.
  •  
2.
  • Buehler, Stefan, et al. (författare)
  • Radiative transfer calculations for a passive microwave satellite sensor : comparing a fast model and a line-by-line model
  • 2006
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 111:20, s. 20304-
  • Tidskriftsartikel (refereegranskat)abstract
    • A comparison between the fast radiative transfer model Radiative Transfer for the TIROS Operational Vertical Sounder (RTTOV-7) and the physical radiative transfer model Atmospheric Radiative Transfer Simulator ( ARTS) was carried out. Radiances were simulated for the sounding channels of the Advanced Microwave Sounding Unit B (AMSU-B) for the whole globe for a single time of a single day ( 1 January 2000, 0000 UT). Temperature, pressure, and specific humidity profiles from the reanalysis data set ERA-40 of the European Centre for Medium-Range Weather Forecasts (ECMWF) were used as input for both models; geopotential height profiles were also used but only as input for ARTS. The simulations were made for two different surface emissivities, 0.60 and 0.95. The low surface emissivity case exhibits the larger radiance differences. Although the global values of the mean difference and standard deviation are small ( for example, the global mean difference for channel 18 is 0.014 K and the standard deviation is 0.232 K), the examination of the geographical distribution of the differences shows that large positive or negative values are observed over dry regions of high northern and southern latitudes and over dry elevated regions. The origin of these differences was found to be due to errors introduced by the transmittance parametrization used in RTTOV.
  •  
3.
  • Buehler, Stefan, et al. (författare)
  • Recent developments in the line-by-line modeling of outgoing longwave radiation
  • 2006
  • Ingår i: Journal of Quantitative Spectroscopy and Radiative Transfer. - : Elsevier BV. - 0022-4073 .- 1879-1352. ; 98:3, s. 446-457
  • Tidskriftsartikel (refereegranskat)abstract
    • High frequency resolution radiative transfer model calculations with the Atmospheric Radiative Transfer Simulator (ARTS) were used to simulate the clear-sky outgoing longwave radiative flux (OLR) at the top of the atmosphere. Compared to earlier calculations by Clough and coworkers the model used a spherical atmosphere instead of a plane parallel atmosphere, updated spectroscopic parameters from HITRAN, and updated continuum parameterizations from Mlawer and coworkers. These modifications lead to a reduction in simulated OLR by approximately 4.1%, the largest part, approximately 2.5%, being due to the absence of the plane parallel approximation. As a simple application of the new model, the sensitivity of OLR to changes in humidity, carbon dioxide concentration, and temperature were investigated for different cloud-free atmospheric scenarios. It was found that for the tropical scenario a 20% change in humidity has a larger impact than a doubling of the carbon dioxide concentration. The sensitive altitude region for temperature and humidity changes is the entire free troposphere, including the upper troposphere where humidity data quality is poor.
  •  
4.
  • John, Viju Oommen, et al. (författare)
  • A cautionary note on the use of Gaussian statistics in satellite-based UTH climatologies
  • 2006
  • Ingår i: IEEE Geoscience and Remote Sensing Letters. - 1545-598X .- 1558-0571. ; 3:1, s. 130-134
  • Tidskriftsartikel (refereegranskat)abstract
    • This letter presents a cautionary note on the assumption of Gaussian behavior for upper tropospheric humidity (UTH) derived from satellite data in climatological studies, which can introduce a wet bias in the climatology. An example study using European Centre for Medium-Range Weather Forecasts reanalysis data shows that this wet bias can reach up to 6 %RH, which is significant for climatological applications. A simple Monte Carlo approach demonstrates that these differences and their link to the variability of brightness temperatures are due to a log-normal distribution of the UTH. This problem can be solved by using robust estimators such as the median instead of the arithmetic mean.
  •  
5.
  • John, Viju Oommen, et al. (författare)
  • Understanding the variability of clear-sky outgoing long-wave radiation based on ship-based temperature and water vapour measurements
  • 2006
  • Ingår i: Quarterly Journal of the Royal Meteorological Society. - : Wiley. - 0035-9009 .- 1477-870X. ; 132:621, s. 2675-2691
  • Tidskriftsartikel (refereegranskat)abstract
    • High-resolution radiative transfer model calculations with the Atmospheric Radiative Transfer Simulator (ARTS) were used to simulate the clear-sky outgoing long-wave radiative flux (OLR) at the top of the atmosphere. The unique set of radiosonde data collected by the research vessel Polarstern of the Alfred Wegener Institute for Polar and Marine Research during 27 expeditions in the years 1982 to 2003 was used to investigate the sources of clear-sky OLR variability for ocean areas in different climate zones and seasons. For this dataset, tropospheric temperature variations contribute approximately 33 W m(-2) OLR variability. tropospheric relative humidity variations 8.5 W m(-2), and vertical structure 2.3-3.4 W m(-2). Of these, 0.3-1.0 W m(-2) are due to structures on a vertical scale smaller than 4 km, which cannot be resolved by conventional remote-sensing instruments. It was also found that the poor absolute accuracy of current humidity data in the upper troposphere, approximately 40% relative error in relative humidity, leads to a significant uncertainty in OLR of about 3.8 W m(-2) (for a midlatitude summer atmosphere), which should be put in the context of the double CO2 effect of only 2.6 W m(-2) (for the same atmosphere).
  •  
6.
  • Pietranera, Luca, et al. (författare)
  • Observing cosmic microwave background polarisation through ice
  • 2007
  • Ingår i: Monthly notices of the Royal Astronomical Society. - : Oxford University Press (OUP). - 0035-8711 .- 1365-2966. ; 376:2, s. 645-650
  • Tidskriftsartikel (refereegranskat)abstract
    • Ice crystal clouds in the upper troposphere can generate polarization signals at the μK level. This signal can seriously affect very sensitive ground-based searches for E and B modes of cosmic microwave background polarization. In this paper, we estimate this effect within the CℓOVER experiment observing bands (97, 150 and 220 GHz) for the selected observing site (Llano de Chajnantor, Atacama desert, Chile). The results show that the polarization signal from the clouds can be of the order of or even bigger than the cosmic microwave background expected polarization. Climatological data suggest that this signal is fairly constant over the whole year in Antarctica. On the other hand, the stronger seasonal variability in Atacama allows for a 50 per cent of clean observations during the dry season.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy