SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonasson Emma 1987) srt2:(2016)"

Sökning: WFRF:(Jonasson Emma 1987) > (2016)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Safavi, Setareh, et al. (författare)
  • HSP90 inhibition blocks ERBB3 and RET phosphorylation in myxoid/round cell liposarcoma and causes massive cell death in vitro and in vivo
  • 2016
  • Ingår i: OncoTarget. - : Impact Journals, LLC. - 1949-2553. ; 7:1, s. 433-445
  • Tidskriftsartikel (refereegranskat)abstract
    • Myxoid sarcoma (MLS) is one of the most common types of malignant soft tissue tumors. MLS is characterized by the FUS-DDIT3 or EWSR1-DDIT3 fusion oncogenes that encode abnormal transcription factors. The receptor tyrosine kinase (RTK) encoding RET was previously identified as a putative downstream target gene to FUS-DDIT3 and here we show that cultured MLS cells expressed phosphorylated RET together with its ligand Persephin. Treatment with RET specific kinase inhibitor Vandetanib failed to reduce RET phosphorylation and inhibit cell growth, suggesting that other RTKs may phosphorylate RET. A screening pointed out EGFR and ERBB3 as the strongest expressed phosphorylated RTKs in MLS cells. We show that ERBB3 formed nuclear and cytoplasmic complexes with RET and both RTKs were previously reported to form complexes with EGFR. The formation of RTK hetero complexes could explain the observed Vandetanib resistence in MLS. EGFR and ERBB3 are clients of HSP90 that help complex formation and RTK activation. Treatment of cultured MLS cells with HSP90 inhibitor 17-DMAG, caused loss of RET and ERBB3 phosphorylation and lead to rapid cell death. Treatment of MLS xenograft carrying Nude mice resulted in massive necrosis, rupture of capillaries and hemorrhages in tumor tissues. We conclude that complex formation between RET and other RTKs may cause RTK inhibitor resistance. HSP90 inhibitors can overcome this resistance and are thus promising drugs for treatment of MLS/RCLS.
  •  
2.
  • Åman, Pierre, 1953, et al. (författare)
  • Regulatory mechanisms, expression levels and proliferation effects of the FUS-DDIT3 fusion oncogene in liposarcoma.
  • 2016
  • Ingår i: The Journal of pathology. - : Wiley. - 1096-9896 .- 0022-3417. ; 238:5, s. 689-99
  • Tidskriftsartikel (refereegranskat)abstract
    • Fusion oncogenes are among the most common types of oncogene in human cancers. The gene rearrangements result in new combinations of regulatory elements and functional protein domains. Here we studied a subgroup of sarcomas and leukaemias characterized by the FET (FUS, EWSR1, TAF15) family of fusion oncogenes, including FUS-DDIT3 in myxoid liposarcoma (MLS). We investigated the regulatory mechanisms, expression levels and effects of FUS-DDIT3 in detail. FUS-DDIT3 showed a lower expression than normal FUS at both the mRNA and protein levels, and single-cell analysis revealed a lack of correlation between FUS-DDIT3 and FUS expression. FUS-DDIT3 transcription was regulated by the FUS promotor, while its mRNA stability depended on the DDIT3 sequence. FUS-DDIT3 protein stability was regulated by protein interactions through the FUS part, rather than the leucine zipper containing DDIT3 part. In addition, in vitro as well as in vivo FUS-DDIT3 protein expression data displayed highly variable expression levels between individual MLS cells. Combined mRNA and protein analyses at the single-cell level showed that FUS-DDIT3 protein expression was inversely correlated to the expression of cell proliferation-associated genes. We concluded that FUS-DDIT3 is uniquely regulated at the transcriptional as well as the post-translational level and that its expression level is important for MLS tumour development. The FET fusion oncogenes are potentially powerful drug targets and detailed knowledge about their regulation and functions may help in the development of novel treatments. Copyright © 2016 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy