SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonasson F) srt2:(2015-2019)"

Sökning: WFRF:(Jonasson F) > (2015-2019)

  • Resultat 1-10 av 15
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Joffrin, E., et al. (författare)
  • Overview of the JET preparation for deuterium-tritium operation with the ITER like-wall
  • 2019
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 1741-4326 .- 0029-5515. ; 59:11
  • Forskningsöversikt (refereegranskat)abstract
    • For the past several years, the JET scientific programme (Pamela et al 2007 Fusion Eng. Des. 82 590) has been engaged in a multi-campaign effort, including experiments in D, H and T, leading up to 2020 and the first experiments with 50%/50% D-T mixtures since 1997 and the first ever D-T plasmas with the ITER mix of plasma-facing component materials. For this purpose, a concerted physics and technology programme was launched with a view to prepare the D-T campaign (DTE2). This paper addresses the key elements developed by the JET programme directly contributing to the D-T preparation. This intense preparation includes the review of the physics basis for the D-T operational scenarios, including the fusion power predictions through first principle and integrated modelling, and the impact of isotopes in the operation and physics of D-T plasmas (thermal and particle transport, high confinement mode (H-mode) access, Be and W erosion, fuel recovery, etc). This effort also requires improving several aspects of plasma operation for DTE2, such as real time control schemes, heat load control, disruption avoidance and a mitigation system (including the installation of a new shattered pellet injector), novel ion cyclotron resonance heating schemes (such as the three-ions scheme), new diagnostics (neutron camera and spectrometer, active Alfven eigenmode antennas, neutral gauges, radiation hard imaging systems...) and the calibration of the JET neutron diagnostics at 14 MeV for accurate fusion power measurement. The active preparation of JET for the 2020 D-T campaign provides an incomparable source of information and a basis for the future D-T operation of ITER, and it is also foreseen that a large number of key physics issues will be addressed in support of burning plasmas.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Dahl, F, et al. (författare)
  • Imaging single DNA molecules for high precision NIPT
  • 2018
  • Ingår i: Scientific reports. - : Springer Science and Business Media LLC. - 2045-2322. ; 8:1, s. 4549-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cell-free DNA analysis is becoming adopted for first line aneuploidy screening, however for most healthcare programs, cost and workflow complexity is limiting adoption of the test. We report a novel cost effective method, the Vanadis NIPT assay, designed for high precision digitally-enabled measurement of chromosomal aneuploidies in maternal plasma. Reducing NIPT assay complexity is achieved by using novel molecular probe technology that specifically label target chromosomes combined with a new readout format using a nanofilter to enrich single molecules for imaging and counting without DNA amplification, microarrays or sequencing. The primary objective of this study was to assess the Vanadis NIPT assay with respect to analytical precision and clinical feasibility. Analysis of reference DNA samples indicate that samples which are challenging to analyze with low fetal-fraction can be readily detected with a limit of detection determined at <2% fetal-fraction. In total of 286 clinical samples were analysed and 30 out of 30 pregnancies affected by trisomy 21 were classified correctly. This method has the potential to make cost effective NIPT more widely available with more women benefiting from superior detection and false positive rates.
  •  
6.
  • Ahrentorp, Fredrik, et al. (författare)
  • Sensitive magnetic biodetection using magnetic multi-core nanoparticles and RCA coils
  • 2017
  • Ingår i: Journal of Magnetism and Magnetic Materials. - : Elsevier BV. - 0304-8853 .- 1873-4766. ; 427, s. 14-18
  • Tidskriftsartikel (refereegranskat)abstract
    • We use functionalized iron oxide magnetic multi-core particles of 100 nm in size (hydrodynamic particle diameter) and AC susceptometry (ACS) methods to measure the binding reactions between the magnetic nanoparticles (MNPs) and bio-analyte products produced from DNA segments using the rolling circle amplification (RCA) method. We use sensitive induction detection techniques in order to measure the ACS response. The DNA is amplified via RCA to generate RCA coils with a specific size that is dependent on the amplification time. After about 75 min of amplification we obtain an average RCA coil diameter of about 1 mu m. We determine a theoretical limit of detection (LOD) in the range of 11 attomole (corresponding to an analyte concentration of 55 fM for a sample volume of 200 mu L) from the ACS dynamic response after the MNPs have bound to the RCA coils and the measured ACS readout noise. We also discuss further possible improvements of the LOD.
  •  
7.
  • Fock, Jeppe, et al. (författare)
  • Characterization of fine particles using optomagnetic measurements
  • 2017
  • Ingår i: Physical Chemistry, Chemical Physics - PCCP. - : Royal Society of Chemistry (RSC). - 1463-9076 .- 1463-9084. ; 19:13, s. 8802-8814
  • Tidskriftsartikel (refereegranskat)abstract
    • The remanent magnetic moment and the hydrodynamic size are important parameters for the synthesis and applications of magnetic nanoparticles (MNPs). We present the theoretical basis for the determination of the remanent magnetic moment and the hydrodynamic size of MNPs with a narrow size distribution using optomagnetic measurements. In these, the 2nd harmonic variation of the intensity of light transmitted through an MNP suspension is measured as a function of an applied axial oscillating magnetic field. We first show how the measurements of the optomagnetic signal magnitude at a low frequency vs. magnetic field amplitude can be used to determine the MNP moment. Subsequently, we use linear response theory to describe the dynamic non-equilibrium response of the MNP suspension at low magnetic field amplitudes and derive a link between optomagnetic measurements and magnetic AC susceptibility measurements. We demonstrate the presented methodology on two samples of commercially available multi-core MNPs. The results compare well with those obtained by dynamic light scattering, AC susceptibility and vibrating sample magnetometry measurements on the same samples when the different weighting of the particle size in the techniques is taken into account. The optomagnetic technique is simple, fast and does not require prior knowledge of the concentration of MNPs and it thus has the potential to be used as a routine tool for quality control of MNPs.
  •  
8.
  • Jonasson, Klara J., et al. (författare)
  • Synthesis and characterisation of POCsp3OP supported Ni(II) hydroxo, hydroxycarbonyl and carbonate complexes
  • 2018
  • Ingår i: Polyhedron. - : Elsevier BV. - 0277-5387. ; 143, s. 132-137
  • Tidskriftsartikel (refereegranskat)abstract
    • A nickel(II) hydroxo complex (3) supported by a cyclohexyl based POCsp3OP pincer ligand (POCsp3OP = cis-1,3-Bis-(di-tert-butylphosphinito)cyclohexyl) is reported. Complex 3 reacts with CO to form the corresponding hydroxycarbonyl complex, (POCsp3OP)NiCOOH (4). Complex 3 is also reactive towards CO2, forming a bicarbonate species (5) that under reduced pressure loses 1/2 eq. of H2O and CO2 to give a binuclear, bridged carbonate complex (6). All compounds were characterized in the solid state by X-ray diffraction.
  •  
9.
  • Jonasson, Lars S., 1983-, et al. (författare)
  • Higher striatal D2-receptor availability in aerobically fit older adults but non-selective intervention effects after aerobic versus resistance training
  • 2019
  • Ingår i: NeuroImage. - : Elsevier. - 1053-8119 .- 1095-9572. ; 202
  • Tidskriftsartikel (refereegranskat)abstract
    • There is much evidence that dopamine is vital for cognitive functioning in aging. Here we tested the hypothesis that aerobic exercise and fitness influence dopaminergic neurotransmission in the striatum, and in turn performance on offline working-memory updating tasks. Dopaminergic neurotransmission was measured by positron emission tomography (PET) and the non-displacable binding potential (BPND) of [11C]raclopride, i.e. dopamine (DA) D2-receptor (D2R) availability. Fifty-four sedentary older adults underwent a six-months exercise intervention, performing either aerobic exercise or stretching, toning, and resistance active control training. At baseline, higher aerobic fitness levels (VO2peak) were associated with higher BPND in the striatum, providing evidence of a link between an objective measure of aerobic fitness and D2R in older adults. BPND decreased substantially over the intervention in both groups but the intervention effects were non-selective with respect to exercise group. The decrease was several times larger than any previously estimated annual decline in D2R, potentially due to increased endogenous DA. Working-memory was unrelated to D2R both at baseline and following the intervention. To conclude, we provide partial evidence for a link between physical exercise and DA. Utilizing a PET protocol able to disentangle both D2R and DA levels could shed further light on whether, and how, aerobic exercise impacts the dopaminergic system in older adults.
  •  
10.
  • Loren, N., et al. (författare)
  • Fluorescence recovery after photobleaching in material and life sciences: putting theory into practice
  • 2015
  • Ingår i: Quarterly Reviews of Biophysics. - : Cambridge University Press (CUP). - 0033-5835 .- 1469-8994. ; 48:3, s. 323-387
  • Tidskriftsartikel (refereegranskat)abstract
    • Fluorescence recovery after photobleaching (FRAP) is a versatile tool for determining diffusion and interaction/binding properties in biological and material sciences. An understanding of the mechanisms controlling the diffusion requires a deep understanding of structure-interaction-diffusion relationships. In cell biology, for instance, this applies to the movement of proteins and lipids in the plasma membrane, cytoplasm and nucleus. In industrial applications related to pharmaceutics, foods, textiles, hygiene products and cosmetics, the diffusion of solutes and solvent molecules contributes strongly to the properties and functionality of the final product. All these systems are heterogeneous, and accurate quantification of the mass transport processes at the local level is therefore essential to the understanding of the properties of soft (bio)materials. FRAP is a commonly used fluorescence microscopy-based technique to determine local molecular transport at the micrometer scale. A brief high-intensity laser pulse is locally applied to the sample, causing substantial photobleaching of the fluorescent molecules within the illuminated area. This causes a local concentration gradient of fluorescent molecules, leading to diffusional influx of intact fluorophores from the local surroundings into the bleached area. Quantitative information on the molecular transport can be extracted from the time evolution of the fluorescence recovery in the bleached area using a suitable model. A multitude of FRAP models has been developed over the years, each based on specific assumptions. This makes it challenging for the non-specialist to decide which model is best suited for a particular application. Furthermore, there are many subtleties in performing accurate FRAP experiments. For these reasons, this review aims to provide an extensive tutorial covering the essential theoretical and practical aspects so as to enable accurate quantitative FRAP experiments for molecular transport measurements in soft (bio)materials.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 15

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy