SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones Adam C.) srt2:(2000-2004)"

Sökning: WFRF:(Jones Adam C.) > (2000-2004)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Hillier, Ladeana W, et al. (författare)
  • Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution
  • 2004
  • Ingår i: Nature. - 0028-0836 .- 1476-4687. ; 432:7018, s. 695-716
  • Tidskriftsartikel (refereegranskat)abstract
    • We present here a draft genome sequence of the red jungle fowl, Gallus gallus. Because the chicken is a modern descendant of the dinosaurs and the first non-mammalian amniote to have its genome sequenced, the draft sequence of its genome--composed of approximately one billion base pairs of sequence and an estimated 20,000-23,000 genes--provides a new perspective on vertebrate genome evolution, while also improving the annotation of mammalian genomes. For example, the evolutionary distance between chicken and human provides high specificity in detecting functional elements, both non-coding and coding. Notably, many conserved non-coding sequences are far from genes and cannot be assigned to defined functional classes. In coding regions the evolutionary dynamics of protein domains and orthologous groups illustrate processes that distinguish the lineages leading to birds and mammals. The distinctive properties of avian microchromosomes, together with the inferred patterns of conserved synteny, provide additional insights into vertebrate chromosome architecture.
  •  
2.
  • Jones, Adam G., et al. (författare)
  • Mate quality influences multiple maternity in the sex-role-reversed pipefish Syngnathus typhle
  • 2000
  • Ingår i: Oikos. - : Wiley. - 0030-1299 .- 1600-0706. ; 90:2, s. 321-326
  • Tidskriftsartikel (refereegranskat)abstract
    • In the pipefish Syngnathus typhle, pregnant males provide all parental care. Females are able to produce more eggs than males can brood, and consequently females compete more intensely for mates than do males, a phenomenon defined as sex-role reversal. As the genetic mating system influences the operation of sexual selection, we investigate variation in one phenotypic component of mate quality, female body size, as a possible proximate influence on mating system variation in S. typhle. Breeding trials were employed, each consisting of a single receptive male with four adult females. In each replicate, a focal male was paired either with a set of small or with a set of large females. Males were allowed to mate freely, and after several weeks of brood development, maternity of the progeny was resolved using three microsatellite loci. Males with access either to small or to large females successfully mated with a mean of 2.1 or 1.3 females, respectively, a significant difference. Results indicate that variation in female size can affect the mating system and thereby influence sexual selection in pipefish. Thus, the high rate of multiple mating by S. typhle males in the wild may be explained in part by the extensive size variation in naturally occurring, sexually mature females.
  •  
3.
  • Jones, Adam G., et al. (författare)
  • The Bateman gradient and the cause of sexual selection in a sex-role-reversed pipefish
  • 2000
  • Ingår i: Proceedings of the Royal Society of London. Biological Sciences. - : The Royal Society. - 0962-8452 .- 1471-2954. ; 267:1444, s. 677-680
  • Tidskriftsartikel (refereegranskat)abstract
    • As a conspicuous evolutionary mechanism, sexual selection has received much attention from theorists and empiricists. Although the importance of the mating system to sexual selection has long been appreciated, the precise relationship remains obscure. In a classic experimental study based on parentage assessment using visible genetic markers, more than 50 years ago A. J. Bateman proposed that the cause of sexual selection in Drosophila is ‘the stronger correlation, in males (relative to females), between number of mates and fertility (number of progeny)’. Half a century later, molecular genetic techniques for assigning parentage now permit mirror–image experimental tests of the ‘Bateman gradient’ using sex–role–reversed species. Here we show that, in the male–pregnant pipefish Syngnathus typhle, females exhibit a stronger positive association between number of mates and fertility than do males and that this relationship responds in the predicted fashion to changes in the adult sex ratio. These findings give empirical support to the idea that the relationship between mating success and number of progeny, as characterized by the Bateman gradient, is a central feature of the genetic mating system affecting the strength and direction of sexual selection.
  •  
4.
  • Li, Jian-Liang, et al. (författare)
  • A genome scan for modifiers of age at onset in Huntington disease : The HD MAPS study.
  • 2003
  • Ingår i: American Journal of Human Genetics. - : Elsevier BV. - 0002-9297 .- 1537-6605. ; 73:3, s. 682-7
  • Tidskriftsartikel (refereegranskat)abstract
    • Huntington disease (HD) is caused by the expansion of a CAG repeat within the coding region of a novel gene on 4p16.3. Although the variation in age at onset is partly explained by the size of the expanded repeat, the unexplained variation in age at onset is strongly heritable (h2=0.56), which suggests that other genes modify the age at onset of HD. To identify these modifier loci, we performed a 10-cM density genomewide scan in 629 affected sibling pairs (295 pedigrees and 695 individuals), using ages at onset adjusted for the expanded and normal CAG repeat sizes. Because all those studied were HD affected, estimates of allele sharing identical by descent at and around the HD locus were adjusted by a positionally weighted method to correct for the increased allele sharing at 4p. Suggestive evidence for linkage was found at 4p16 (LOD=1.93), 6p21-23 (LOD=2.29), and 6q24-26 (LOD=2.28), which may be useful for investigation of genes that modify age at onset of HD.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy