SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jones Celia) srt2:(2015-2019)"

Sökning: WFRF:(Jones Celia) > (2015-2019)

  • Resultat 1-4 av 4
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Filbee-Dexter, Karen, et al. (författare)
  • Quantifying ecological and social drivers of ecological surprise
  • 2018
  • Ingår i: Journal of Applied Ecology. - : Wiley. - 0021-8901 .- 1365-2664. ; 55:5, s. 2135-2146
  • Tidskriftsartikel (refereegranskat)abstract
    • 1. A key challenge facing ecologists and ecosystem managers is understanding what drives unexpected shifts in ecosystems and limits the effectiveness of human interventions. Research that integrates and analyses data from natural and social systems can provide important insight for unravelling the complexity of these dynamics. It is, therefore, a critical step towards the development of evidence-based, whole-system management approaches.2. To examine our ability to influence ecosystems that are behaving in unexpected ways, we explore three prominent cases of ecological surprise. We captured the social-ecological systems (SES) using key variables and interactions from Ostrom's SES framework, which integrates broader ecosystem processes (e.g. climate, connectivity), management variables (e.g. quotas, restrictions, monitoring), resource use behaviours (e.g. harvesting) and the resource unit (e.g. trees, fish, clean water) being managed.3. Structural equation modelling revealed that management interventions often influenced resource use behaviours (e.g. rules and limits strongly affected harvest or pollution), but they did not have a significant effect on the abundance of the managed resource. Instead, most resource variability was related to ecological processes and feedbacks operating at broader spatial or temporal scales than management interventions, which locked the resource system into the degraded state.4. Synthesis and applications. Mismatch between the influence of management systems and ecosystem processes can limit the effectiveness of human interventions during periods of ecological surprise. Management strategies should shift from a conventional focus on removal or addition of a single resource towards solutions that influence the broader ecosystem. Operationalizing Ostrom’s framework to quantitatively analyse social‐ecological systems using structural equation models shows promise for testing solutions to navigate these events.
  •  
2.
  •  
3.
  • Michalska, Karolina, et al. (författare)
  • Functional plasticity of antibacterial EndoU toxins
  • 2018
  • Ingår i: Molecular Microbiology. - : WILEY. - 0950-382X .- 1365-2958. ; 109:4, s. 509-527
  • Tidskriftsartikel (refereegranskat)abstract
    • Bacteria use several different secretion systems to deliver toxic EndoU ribonucleases into neighboring cells. Here, we present the first structure of a prokaryotic EndoU toxin in complex with its cognate immunity protein. The contact‐dependent growth inhibition toxin CdiA‐CTSTECO31 from Escherichia coli STEC_O31 adopts the eukaryotic EndoU fold and shares greatest structural homology with the nuclease domain of coronavirus Nsp15. The toxin contains a canonical His‐His‐Lys catalytic triad in the same arrangement as eukaryotic EndoU domains, but lacks the uridylate‐specific ribonuclease activity that characterizes the superfamily. Comparative sequence analysis indicates that bacterial EndoU domains segregate into at least three major clades based on structural variations in the N‐terminal subdomain. Representative EndoU nucleases from clades I and II degrade tRNA molecules with little specificity. In contrast, CdiA‐CTSTECO31 and other clade III toxins are specific anticodon nucleases that cleave tRNAGlu between nucleotides C37 and m2A38. These findings suggest that the EndoU fold is a versatile scaffold for the evolution of novel substrate specificities. Such functional plasticity may account for the widespread use of EndoU effectors by diverse inter‐bacterial toxin delivery systems.
  •  
4.
  • Miguel, Andreia, et al. (författare)
  • The SHORT-ROOT-like gene PtSHR2B is involved in Populus phellogen activity
  • 2016
  • Ingår i: Journal of Experimental Botany. - : Oxford University Press. - 0022-0957 .- 1460-2431. ; 67:5, s. 1545-1555
  • Tidskriftsartikel (refereegranskat)abstract
    • SHORT-ROOT (SHR) is a GRAS transcription factor first characterized for its role in the specification of the stem cell niche and radial patterning in Arabidopsis thaliana (At) roots. Three SHR-like genes have been identified in Populus trichocarpa (Pt). PtSHR1 shares high similarity with AtSHR over the entire length of the coding sequence. The two other Populus SHR-like genes, PtSHR2A and PtSHR2B, are shorter in their 5' ends when compared with AtSHR. Unlike PtSHR1, that is expressed throughout the cambial zone of greenhouse-grown Populus trees, PtSHR2Bprom:uidA expression was detected in the phellogen. Additionally, PtSHR1 and PtSHR2B expression patterns markedly differ in the shoot apex and roots of in vitro plants. Transgenic hybrid aspen expressing PtSHR2B under the 35S constitutive promoter showed overall reduced tree growth while the proportion of bark increased relative to the wood. Reverse transcription-quantitative PCR (RT-qPCR) revealed increased transcript levels of cytokinin metabolism and response-related genes in the transgenic plants consistent with an increase of total cytokinin levels. This was confirmed by cytokinin quantification by LC-MS/MS. Our results indicate that PtSHR2B appears to function in the phellogen and therefore in the regulation of phellem and periderm formation, possibly acting through modulation of cytokinin homeostasis. Furthermore, this work points to a functional diversification of SHR after the divergence of the Populus and Arabidopsis lineages. This finding may contribute to selection and breeding strategies of cork oak in which, unlike Populus, the phellogen is active throughout the entire tree lifespan, being at the basis of a highly profitable cork industry.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-4 av 4

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy