SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jonsson Tomas) srt2:(2005-2009)"

Sökning: WFRF:(Jonsson Tomas) > (2005-2009)

  • Resultat 1-10 av 42
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Jonsson, Tomas, et al. (författare)
  • Food web structure affects the extinction risk of species in ecological communities
  • 2006
  • Ingår i: Ecological Modelling. - : Elsevier. - 0304-3800 .- 1872-7026. ; 199:1, s. 93-106
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper studies the effect of food web structure on the extinction risk of species. We examine 793 different six-species food web structures with different number, position and strength of trophic links and expose them to stochasticity in a model with Lotka–Volterra predator–prey dynamics. The characteristics of species (intrinsic rates of increase as well as intraspecific density dependence) are held constant, but the interactions with other species and characteristics of the food web are varied.Extinctions of producer species occurred but were rare. Species at all trophic levels went extinct in communities with strong interactions as compared to communities with no strong interactions where only the secondary consumer went extinct. Extinction of a species directly involved in a strong interaction was more frequent than extinctions of species not directly involved in strong interactions (here termed direct and indirect extinctions, respectively). In model webs where both direct and indirect extinctions occurred, roughly 20% were indirect extinctions. The probability of indirect extinctions decreased with number of links. It is concluded that not just the presence of strong interactions but also their position and direction can have profound effects on extinction risk of species.Three principal components, based on 11 different food web metrics, explained 76.6% of the variation in trophic structure among food webs that differed in the number and position, but not strength, of trophic links. The extinction risk of consumer species was closely correlated to at least two of the three principal components, indicating that extinction risk of consumer species were affected by food web structure. The existence of a relationship between food web structure and extinction risk of a species was confirmed by a regression tree analysis and a complementary log-linear analysis. These analyses showed that extinction of consumer species were affected by the position of strong interactions and a varying number of other food web metrics, different for intermediate and top species. Furthermore, the degree to which the equilibrium abundance of a species is affected by a press perturbation is an indication of the risk of extinction that this species faces when exposed to environmental stochasticity. It is concluded that extinction risk of a species is determined in a complicated way by an interaction among species characteristics, food web structure and the type of disturbance.
  •  
2.
  • Karlsson, Patrik, et al. (författare)
  • Food web structure and interaction strength pave the way for vulnerability to extinction
  • 2007
  • Ingår i: Journal of Theoretical Biology. - : Elsevier. - 0022-5193 .- 1095-8541. ; 249:1, s. 77-92
  • Tidskriftsartikel (refereegranskat)abstract
    • This paper focuses on how food web structure and interactions among species affects the vulnerability, due to environmental variability, to extinction of species at different positions in model food webs. Vulnerability is here not measured by a traditional extinction threshold but is instead inspired by the IUCN criteria for endangered species: an observed rapid decline in population abundance. Using model webs influenced by stochasticity with zero autocorrelation, we investigate the ecological determinants of species vulnerability, i.e. the trophic interactions between species and food web structure and how these interact with the risk of sudden drops in abundance of species. We find that (i) producers fulfil the criterion of vulnerable species more frequently than other species, (ii) food web structure is related to vulnerability, and (iii) the vulnerability of species is greater when involved in a strong trophic interaction than when not. We note that our result on the relationship between extinction risk and trophic position of species contradict previous suggestions and argue that the main reason for the discrepancy probably is due to the fact that we study the vulnerability to environmental stochasticity and not extinction risk due to overexploitation, habitat destruction or interactions with introduced species. Thus, we suggest that the vulnerability of species to environmental stochasticity may be differently related to trophic position than the vulnerability of species to other factors.Earlier research on species extinctions has looked for intrinsic traits of species that correlate with increased vulnerability to extinction. However, to fully understand the extinction process we must also consider that species interactions may affect vulnerability and that not all extinctions are the result of long, gradual reductions in species abundances. Under environmental stochasticity (which importance frequently is assumed to increase as a result of climate change) and direct and indirect interactions with other species some extinctions may occur rapidly and apparently unexpectedly. To identify the first declines of population abundances that may escalate and lead to extinctions as early as possible, we need to recognize which species are at greatest risk of entering such dangerous routes and under what circumstances. This new perspective may contribute to our understanding of the processes leading to extinction of populations and eventually species. This is especially urgent in the light of the current biodiversity crisis where a large fraction of the world's biodiversity is threatened.
  •  
3.
  • Thorgeirsson, Thorgeir E, et al. (författare)
  • A variant associated with nicotine dependence, lung cancer and peripheral arterial disease
  • 2008
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 452:7187, s. 9-638
  • Tidskriftsartikel (refereegranskat)abstract
    • Smoking is a leading cause of preventable death, causing about 5 million premature deaths worldwide each year(1,2). Evidence for genetic influence on smoking behaviour and nicotine dependence (ND)(3-8) has prompted a search for susceptibility genes. Furthermore, assessing the impact of sequence variants on smoking-related diseases is important to public health(9,10). Smoking is the major risk factor for lung cancer (LC)(11-14) and is one of the main risk factors for peripheral arterial disease (PAD)(15-17). Here we identify a common variant in the nicotinic acetylcholine receptor gene cluster on chromosome 15q24 with an effect on smoking quantity, ND and the risk of two smoking- related diseases in populations of European descent. The variant has an effect on the number of cigarettes smoked per day in our sample of smokers. The same variant was associated with ND in a previous genomewide association study that used low- quantity smokers as controls(18,19), and with a similar approach we observe a highly significant association with ND. A comparison of cases of LC and PAD with population controls each showed that the variant confers risk of LC and PAD. The findings provide a case study of a gene - environment interaction(20), highlighting the role of nicotine addiction in the pathology of other serious diseases.
  •  
4.
  •  
5.
  •  
6.
  • Bergman, Peter, et al. (författare)
  • Induction of the antimicrobial peptide CRAMP in the blood-brain barrier and meninges after meningococcal infection
  • 2006
  • Ingår i: Infection and Immunity. - 0019-9567 .- 1098-5522. ; 74:12, s. 6982-6991
  • Tidskriftsartikel (refereegranskat)abstract
    • Antimicrobial peptides are present in most living species and constitute important effector molecules of innate immunity. Recently, we and others have detected antimicrobial peptides in the brain. This is an organ that is rarely infected, which has mainly been ascribed to the protective functions of the blood-brain barrier (BBB) and meninges. Since the bactericidal properties of the BBB and meninges are not known, we hypothesized that antimicrobial peptides could play a role in these barriers. We addressed this hypothesis by infecting mice with the neuropathogenic bacterium Neisseria meningitidis. Brains were analyzed for expression of the antimicrobial peptide CRAMP by immunohistochemistry in combination with confocal microscopy. After infection, we observed induction of CRAMP in endothelial cells of the BBB and in cells of the meninges. To explore the functional role of CRAMP in meningococcal disease, we infected mice deficient of the CRAMP gene. Even though CRAMP did not appear to protect the brain from invasion of meningococci, CRAMP knockout mice were more susceptible to meningococcal infection than wild-type mice and exhibited increased meningococcal growth in blood, liver, and spleen. Moreover, we could demonstrate that carbonate, a compound that accumulates in the circulation during metabolic acidosis, makes meningococci more susceptible to CRAMP.
  •  
7.
  •  
8.
  • Björk, Robert G., 1974, et al. (författare)
  • A Climate Change aspect on root dynamics and nitrogen partitioning in a tundra landscape
  • 2005
  • Ingår i: Sediment budgets and rates of sediment transfer across cold environments in Europe. 3rd Workshop of the ESF Network SEDIFLUX, Durham, UK, 15 – 19 December 2005..
  • Konferensbidrag (övrigt vetenskapligt/konstnärligt)abstract
    • The Arctic Climate Impact Assessment (ACIA) recently reported that Arctic is rapidly changing due to Climate Change. Likewise, the mountains of Europe are going to experience large shifts in plant composition and 41-56% of the alpine species might be on the edge of extinction according to the 1st synthesis of the Global Observation Research Initiative in Alpine Environments (GLORIA). Although the tundra ecosystems are subjected to dramatical changes as a result of Climate Change, there is little knowledge of the effect on root dynamics and its implication on the nitrifying and denitrifying microbial community. Here, we compare nitrification enzyme activity (NEA) and denitrification enzyme activity (DEA) rates along an altitudinal gradient with the effects of climatic warming using Open Top Chambers (OTCs) in consideration with root dynamics and architecture. This study was conducted at Latnjajaure Field Station (LFS) located in the midalpine region in northern Sweden. LFS is the Swedish field site for the International Tundra Experiment (ITEX), established in 1993. This gives an opportunity to investigate long-term effects of climatic warming by OTCs and an altitudinal gradient (1000m to 1365m), both within a very small geographical range. The OTCs used at LFS increases the soil surface temperature by approximately 1.5ºC whereas air temperatures normally falls with 0.6ºC with every hundred meter of increased altitude. To analyse the NEA and DEA we used an anaerobic incubation technique, based on acetylene inhibition technique, resulting in N2O as the only end product, which then were analysed by gas chromatography. Soil cores were additionally sampled in the OTCs to study the effects of climatic warming on the root system. The specific root length, root length density and root biomass were determined for the different root fractions. The results from NEA and DEA contradict each other. The gradient study show decreased NEA and DEA rates with falling altitude, whereas the warming experiment show a slight non significant increase due to the temperature enhancement by OTCs. The preliminary results from the root sampling indicate that there is a plant community specific response in root architecture, which has an output on root biomass and particularly in the fraction of fine roots, although, climatic warming did not have any significant affect on the root biomass. The fact that altitudinal temperature decline did not reduce NEA and DEA rates might in part be explained of the variables measured here, although they are not conclusive.
  •  
9.
  • Brose, Ulrich, et al. (författare)
  • Body sizes of consumers and their resources
  • 2005
  • Ingår i: Ecology. - : Ecological Society of America. - 0012-9658 .- 1939-9170. ; 86:9, s. 2545-2545
  • Tidskriftsartikel (refereegranskat)abstract
    • Trophic information—who eats whom—and species’ body sizes are two of the most basic descriptions necessary to understand community structure as well as ecological and evolutionary dynamics. Consumer–resource body size ratios between predators and their prey, and parasitoids and their hosts, have recently gained increasing attention due to their important implications for species’ interaction strengths and dynamical population stability. This data set documents body sizes of consumers and their resources. We gathered body size data for the food webs of Skipwith Pond, a parasitoid community of grass-feeding chalcid wasps in British grasslands; the pelagic community of the Benguela system, a source web based on broom in the United Kingdom; Broadstone Stream, UK; the Grand Caric¸aie marsh at Lake Neuchaˆtel, Switzerland; Tuesday Lake, USA; alpine lakes in the Sierra Nevada of California; Mill Stream, UK; and the eastern Weddell Sea Shelf, Antarctica. Further consumer–resource body size data are included for planktonic predators, predatory nematodes, parasitoids, marine fish predators, freshwater invertebrates, Australian terrestrial consumers, and aphid parasitoids. Containing 16 807 records, this is the largest data set ever compiled for body sizes of consumers and their resources. In addition to body sizes, the data set includes information on consumer and resource taxonomy, the geographic location of the study, the habitat studied, the type of the feeding interaction (e.g., predacious, parasitic) and the metabolic categories of the species (e.g., invertebrate, ectotherm vertebrate). The present data set was gathered with the intent to stimulate research on effects of consumer–resource body size patterns on food-web structure, interaction-strength distributions, population dynamics, and community stability. The use of a common data set may facilitate cross-study comparisons and understanding of the relationships between different scientific approaches and models.
  •  
10.
  • Brose, Ulrich, et al. (författare)
  • Consumer-resource body-size relationships in natural food webs
  • 2006
  • Ingår i: Ecology. - : Ecological Society of America esa. - 0012-9658 .- 1939-9170. ; 87:10, s. 2411-2417
  • Tidskriftsartikel (refereegranskat)abstract
    • It has been suggested that differences in body size between consumer and resource species may have important implications for interaction strengths, population dynamics, and eventually food web structure, function, and evolution. Still, the general distribution of consumer-'resource body-size ratios in real ecosystems, and whether they vary systematically among habitats or broad taxonomic groups, is poorly understood. Using a unique global database on consumer and resource body sizes, we show that the mean body-size ratios of aquatic herbivorous and detritivorous consumers are several orders of magnitude larger than those of carnivorous predators. Carnivorous predator-prey body-size ratios vary across different habitats and predator and prey types (invertebrates, ectotherm, and endotherm vertebrates). Predator-prey body-size ratios are on average significantly higher (1) in freshwater habitats than in marine or terrestrial habitats, (2) for vertebrate than for invertebrate predators, and (3) for invertebrate than for ectotherm vertebrate prey. If recent studies that relate body-size ratios to interaction strengths are general, our results suggest that mean consumer-resource interaction strengths may vary systematically across different habitat categories and consumer types.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 42
Typ av publikation
tidskriftsartikel (22)
rapport (7)
konferensbidrag (7)
bokkapitel (3)
annan publikation (2)
bok (1)
visa fler...
visa färre...
Typ av innehåll
refereegranskat (24)
övrigt vetenskapligt/konstnärligt (17)
populärvet., debatt m.m. (1)
Författare/redaktör
Lundälv, Tomas, 1944 (13)
Hökfelt, Tomas (3)
Jonsson, Anders (3)
Lundström, Ulla (3)
Agerberth, Birgitta (3)
Bergman, Peter (3)
visa fler...
Jonsson, Thomas (2)
Engström, Tomas, 195 ... (2)
Medbo, Lars, 1957 (2)
Andersson, Martin (1)
Hylander, Kristoffer (1)
Jonsson, P. (1)
Huang, M. (1)
White, Martin (1)
Smith, P. (1)
Molau, Ulf, 1951 (1)
Noel, A. (1)
Nilsson, Hans-Erik (1)
Simmons, A. (1)
Gottsäter, Anders (1)
Lindblad, Bengt (1)
Brage, Tomas (1)
Allen, D (1)
Åkerman, Gun (1)
Ljungberg, Michael (1)
Strand, Sven-Erik (1)
Jonsson, Peter (1)
Jonsson, Lars (1)
Wirestam, Ronnie (1)
Gudbjartsson, Tomas (1)
Gärdenfors, Ulf (1)
Hallingbäck, Tomas (1)
Thorleifsson, Gudmar (1)
Rafnar, Thorunn (1)
Thorsteinsdottir, Un ... (1)
Stefansson, Kari (1)
Gulliksson, Mikael (1)
Siden, Johan (1)
Jansson, Tomas (1)
Albrektsson, Tomas, ... (1)
Rocci, Antonio (1)
Sennerby, Lars, 1960 (1)
Jonsson, Per (1)
Bylund, Dan (1)
Clarke, G (1)
Chen, CY (1)
Kiemeney, Lambertus ... (1)
Ingason, Andrés (1)
Larsson, Ann I., 196 ... (1)
Almqvist, Monica (1)
visa färre...
Lärosäte
Göteborgs universitet (15)
Högskolan i Skövde (7)
Mittuniversitetet (5)
Lunds universitet (4)
Chalmers tekniska högskola (4)
Umeå universitet (3)
visa fler...
Uppsala universitet (3)
Karolinska Institutet (3)
Stockholms universitet (1)
Linköpings universitet (1)
visa färre...
Språk
Engelska (30)
Svenska (9)
Odefinierat språk (3)
Forskningsämne (UKÄ/SCB)
Naturvetenskap (23)
Teknik (5)
Medicin och hälsovetenskap (3)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy