SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jost M) srt2:(2010-2014)"

Sökning: WFRF:(Jost M) > (2010-2014)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Schael, S., et al. (författare)
  • Electroweak measurements in electron positron collisions at W-boson-pair energies at LEP
  • 2013
  • Ingår i: Physics Reports. - : Elsevier BV. - 0370-1573 .- 1873-6270. ; 532:4, s. 119-244
  • Forskningsöversikt (refereegranskat)abstract
    • Electroweak measurements performed with data taken at the electron positron collider LEP at CERN from 1995 to 2000 are reported. The combined data set considered in this report corresponds to a total luminosity of about 3 fb(-1) collected by the four LEP experiments ALEPH, DELPHI, 13 and OPAL, at centre-of-mass energies ranging from 130 GeV to 209 GeV. Combining the published results of the four LEP experiments, the measurements include total and differential cross-sections in photon-pair, fermion-pair and four-fermion production, the latter resulting from both double-resonant WW and ZZ production as well as singly resonant production. Total and differential cross-sections are measured precisely, providing a stringent test of the Standard Model at centre-of-mass energies never explored before in electron positron collisions. Final-state interaction effects in four-fermion production, such as those arising from colour reconnection and Bose Einstein correlations between the two W decay systems arising in WW production, are searched for and upper limits on the strength of possible effects are obtained. The data are used to determine fundamental properties of the W boson and the electroweak theory. Among others, the mass and width of the W boson, m(w) and Gamma(w), the branching fraction of W decays to hadrons, B(W -> had), and the trilinear gauge-boson self-couplings g(1)(Z), K-gamma and lambda(gamma), are determined to be: m(w) = 80.376 +/- 0.033 GeV Gamma(w) = 2.195 +/- 0.083 GeV B(W -> had) = 67.41 +/- 0.27% g(1)(Z) = 0.984(-0.020)(+0.018) K-gamma - 0.982 +/- 0.042 lambda(gamma) = 0.022 +/- 0.019. (C) 2013 Elsevier B.V. All rights reserved.
  •  
2.
  • Wang, Haidong, et al. (författare)
  • Global, regional, and national levels of neonatal, infant, and under-5 mortality during 1990-2013 : a systematic analysis for the Global Burden of Disease Study 2013
  • 2014
  • Ingår i: The Lancet. - 0140-6736 .- 1474-547X. ; 384:9947, s. 957-979
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND: Remarkable financial and political efforts have been focused on the reduction of child mortality during the past few decades. Timely measurements of levels and trends in under-5 mortality are important to assess progress towards the Millennium Development Goal 4 (MDG 4) target of reduction of child mortality by two thirds from 1990 to 2015, and to identify models of success.METHODS: We generated updated estimates of child mortality in early neonatal (age 0-6 days), late neonatal (7-28 days), postneonatal (29-364 days), childhood (1-4 years), and under-5 (0-4 years) age groups for 188 countries from 1970 to 2013, with more than 29 000 survey, census, vital registration, and sample registration datapoints. We used Gaussian process regression with adjustments for bias and non-sampling error to synthesise the data for under-5 mortality for each country, and a separate model to estimate mortality for more detailed age groups. We used explanatory mixed effects regression models to assess the association between under-5 mortality and income per person, maternal education, HIV child death rates, secular shifts, and other factors. To quantify the contribution of these different factors and birth numbers to the change in numbers of deaths in under-5 age groups from 1990 to 2013, we used Shapley decomposition. We used estimated rates of change between 2000 and 2013 to construct under-5 mortality rate scenarios out to 2030.FINDINGS: We estimated that 6·3 million (95% UI 6·0-6·6) children under-5 died in 2013, a 64% reduction from 17·6 million (17·1-18·1) in 1970. In 2013, child mortality rates ranged from 152·5 per 1000 livebirths (130·6-177·4) in Guinea-Bissau to 2·3 (1·8-2·9) per 1000 in Singapore. The annualised rates of change from 1990 to 2013 ranged from -6·8% to 0·1%. 99 of 188 countries, including 43 of 48 countries in sub-Saharan Africa, had faster decreases in child mortality during 2000-13 than during 1990-2000. In 2013, neonatal deaths accounted for 41·6% of under-5 deaths compared with 37·4% in 1990. Compared with 1990, in 2013, rising numbers of births, especially in sub-Saharan Africa, led to 1·4 million more child deaths, and rising income per person and maternal education led to 0·9 million and 2·2 million fewer deaths, respectively. Changes in secular trends led to 4·2 million fewer deaths. Unexplained factors accounted for only -1% of the change in child deaths. In 30 developing countries, decreases since 2000 have been faster than predicted attributable to income, education, and secular shift alone.INTERPRETATION: Only 27 developing countries are expected to achieve MDG 4. Decreases since 2000 in under-5 mortality rates are accelerating in many developing countries, especially in sub-Saharan Africa. The Millennium Declaration and increased development assistance for health might have been a factor in faster decreases in some developing countries. Without further accelerated progress, many countries in west and central Africa will still have high levels of under-5 mortality in 2030.
  •  
3.
  •  
4.
  •  
5.
  • Ekman, Annica M. L., et al. (författare)
  • Sub-micrometer aerosol particles in the upper troposphere/lowermost stratosphere as measured by CARIBIC and modeled using the MIT-CAM3 global climate model
  • 2012
  • Ingår i: Journal of Geophysical Research. - 0148-0227 .- 2156-2202. ; 117, s. D11202-
  • Tidskriftsartikel (refereegranskat)abstract
    • In this study, we compare modeled (MIT-CAM3) and observed (CARIBIC) sub-micrometer nucleation (N4-12, 4 <= d <= 12 nm) and Aitken mode (N-12, d > 12 nm) particle number concentrations in the upper troposphere and lowermost stratosphere (UT/LMS). Modeled and observed global median N4-12 and N-12 agree fairly well (within a factor of two) indicating that the relatively simplified binary H2SO4-H2O nucleation parameterization applied in the model produces reasonable results in the UT/LMS. However, a comparison of the spatiotemporal distribution of sub-micrometer particles displays a number of discrepancies between MIT-CAM3 and CARIBIC data: N4-12 is underestimated by the model in the tropics and overestimated in the extra-topics. N-12 is in general overestimated by the model, in particular in the tropics and during summer months. The modeled seasonal variability of N4-12 is in poor agreement with CARIBIC data whereas it agrees rather well for N-12. Modeled particle frequency distributions are in general narrower than the observed ones. The model biases indicate an insufficient diffusive mixing in MIT-CAM3 and a too large vertical transport of carbonaceous aerosols. The overestimated transport is most likely caused by the constant supersaturation threshold applied in the model for the activation of particles into cloud droplets. The annually constant SO2 emissions in the model may also partly explain the poor representation of the N4-12 seasonal cycle. Comparing the MIT-CAM3 with CARIBIC data, it is also clear that care has to be taken regarding the representativeness of the measurement data and the time frequency of the model output.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy