SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Jourdan J.) srt2:(2011-2014)"

Sökning: WFRF:(Jourdan J.) > (2011-2014)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Antonov, A. N., et al. (författare)
  • The electron-ion scattering experiment ELISe at the International Facility for Antiproton and Ion Research (FAIR)-A conceptual design study
  • 2011
  • Ingår i: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment. - : Elsevier BV. - 0168-9002 .- 0167-5087. ; 637:1, s. 60-76
  • Tidskriftsartikel (refereegranskat)abstract
    • The electron-ion scattering experiment ELISe is part of the installations envisaged at the new experimental storage ring at the International Facility for Antiproton and Ion Research (FAIR) in Darmstadt, Germany. It offers an unique opportunity to use electrons as probe in investigations of the structure of exotic nuclei. The conceptual design and the scientific challenges of ELISe are presented. (C) 2011 Elsevier B.V. All rights reserved.
  •  
2.
  • Kergoat, G. J., et al. (författare)
  • Cretaceous environmental changes led to high extinction rates in a hyperdiverse beetle family
  • 2014
  • Ingår i: Bmc Evolutionary Biology. - : Springer Science and Business Media LLC. - 1471-2148. ; 14:220
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: As attested by the fossil record, Cretaceous environmental changes have significantly impacted the diversification dynamics of several groups of organisms. A major biome turnover that occurred during this period was the rise of angiosperms starting ca. 125 million years ago. Though there is evidence that the latter promoted the diversification of phytophagous insects, the response of other insect groups to Cretaceous environmental changes is still largely unknown. To gain novel insights on this issue, we assess the diversification dynamics of a hyperdiverse family of detritivorous beetles (Tenebrionidae) using molecular dating and diversification analyses. Results: Age estimates reveal an origin after the Triassic-Jurassic mass extinction (older than previously thought), followed by the diversification of major lineages during Pangaean and Gondwanan breakups. Dating analyses indicate that arid-adapted species diversified early, while most of the lineages that are adapted to more humid conditions diversified much later. Contrary to other insect groups, we found no support for a positive shift in diversification rates during the Cretaceous; instead there is evidence for an 8.5-fold increase in extinction rates that was not compensated by a joint increase in speciation rates. Conclusions: We hypothesize that this pattern is better explained by the concomitant reduction of arid environments starting in the mid-Cretaceous, which likely negatively impacted the diversification of arid-adapted species that were predominant at that time.
  •  
3.
  • Merle, Renaud E., 1976-, et al. (författare)
  • Sr, Nd, Pb and Os Isotope Systematics of CAMP Tholeiites from Eastern North America (ENA) : Evidence of a Subduction-enriched Mantle Source
  • 2013
  • Ingår i: Journal of Petrology. - : Oxford University Press (OUP). - 0022-3530 .- 1460-2415. ; 55:1, s. 133-180
  • Tidskriftsartikel (refereegranskat)abstract
    • The Central Atlantic Magmatic Province (CAMP) is one of the largest igneous provinces on Earth, with an areal extent exceeding 107 km2. Here we document the geochemical characteristics of CAMP basalts from Triassic–Jurassic basins in northeastern USA and Nova Scotia (Canada). The CAMP rocks occur as lava flows, sills and dykes. All of our analysed samples show chemical characteristics typical of CAMP basalts with low titanium content, which include enrichment in the most incompatible elements and negative Nb anomalies. All the basalts also show enriched Sr–Nd–Pb initial (t = 201 Ma) isotopic compositions (206Pb/204Pbini. = 18·155–18·691, 207Pb/204Pbini. = 15·616–15·668, 208Pb/204Pbini. = 38·160–38·616, 143Nd/144Ndini. = 0·512169–0·512499). On the basis of stratigraphy, rare earth element (REE) chemistry and Sr–Nd–Pb isotope composition, three chemical groups are defined. The Hook Mountain group, with the lowest La/Yb ratios, initial 206Pb/204Pbini. >18·5 and 143Nd/144Ndini. > 0·51238, comprises all the lastest and upper stratigraphic units. The Preakness group, with intermediate La/Yb ratios, 206Pb/204Pbini. > 18·5 and 0·51233 > 143Nd/144Ndini. > 0·51225, comprises the intermediate units. The Orange Mountain group has the highest La/Yb ratios and 143Nd/144Ndini. < 0·51235 and involves all the earliest and stratigraphically lowest units, including the entire North Mountain basalts from Nova Scotia. In this last group, three sub-groups may be distinguished: the Rapidan sill, which has 206Pb/204Pbini. higher than 18·5, the Shelburne sub-group, which has 143Nd/144Ndini. < 0·51225, and the remaining Orange Mt samples. With the exception of one sample, the Eastern North America (ENA) CAMP basalts display initial 187Os/188Os ratios in the range of mantle-derived magmas (<0·15). Simple modelling shows that the composition of the ENA CAMP basalts cannot plausibly be explained solely by crustal contamination of oceanic island basalt (OIB), mid-ocean ridge basalt (MORB) or oceanic plateau basalt (OPB) magmas. Mixing of such magma compositions with sub-continental lithospheric mantle (SCLM)-derived melts followed by crustal contamination, by either assimilation–fractional crystallization (AFC) or assimilation through turbulent ascent (ATA) processes is somewhat more successful. However, this latter scenario does not reproduce the REE and isotopic composition of the ENA CAMP in a fully satisfactory manner. Alternatively, we propose a model in which asthenospheric mantle overlying a subducted slab (i.e. mantle wedge) was enriched during Cambrian to Devonian subduction by sedimentary material, isotopically equivalent to Proterozoic–Lower Paleozoic crustal rocks. Subsequently, after subduction ceased, the isotopic composition of this mantle evolved by radioactive decay for another 170 Myr until the CAMP magmatic event. Varying amounts and compositions of the incorporated sedimentary component coupled with radiogenic ingrowth over time can account for the main geochemical characteristics of the ENA CAMP (enriched incompatible element patterns, negative Nb anomalies, enriched Sr–Nd–Pb isotopic composition) and the differences between the three chemical groups.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy