SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Joyner M. J.) srt2:(2015-2019)"

Sökning: WFRF:(Joyner M. J.) > (2015-2019)

  • Resultat 1-6 av 6
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Zheng, Hou-Feng, et al. (författare)
  • Whole-genome sequencing identifies EN1 as a determinant of bone density and fracture
  • 2015
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 0028-0836 .- 1476-4687. ; 526:7571, s. 112-
  • Tidskriftsartikel (refereegranskat)abstract
    • The extent to which low-frequency (minor allele frequency (MAF) between 1-5%) and rare (MAF <= 1%) variants contribute to complex traits and disease in the general population is mainly unknown. Bone mineral density (BMD) is highly heritable, a major predictor of osteoporotic fractures, and has been previously associated with common genetic variants(1-8), as well as rare, population specific, coding variants(9). Here we identify novel non-coding genetic variants with large effects on BMD (n(total) = 53,236) and fracture (n(total) = 508,253) in individuals of European ancestry from the general population. Associations for BMD were derived from whole-genome sequencing (n = 2,882 from UK10K (ref. 10); a population-based genome sequencing consortium), whole-exome sequencing (n = 3,549), deep imputation of genotyped samples using a combined UK10K/1000 Genomes reference panel (n = 26,534), and de novo replication genotyping (n = 20,271). We identified a low-frequency non-coding variant near a novel locus, EN1, with an effect size fourfold larger than the mean of previously reported common variants for lumbar spine BMD8 (rs11692564(T), MAF51.6%, replication effect size510.20 s.d., P-meta = 2 x 10(-14)), which was also associated with a decreased risk of fracture (odds ratio = 0.85; P = 2 x 10(-11); ncases = 98,742 and ncontrols = 409,511). Using an En1cre/flox mouse model, we observed that conditional loss of En1 results in low bone mass, probably as a consequence of high bone turnover. We also identified a novel low frequency non-coding variant with large effects on BMD near WNT16 (rs148771817(T), MAF = 1.2%, replication effect size +10.41 s.d., P-meta = 1 x 10(-11)). In general, there was an excess of association signals arising from deleterious coding and conserved non-coding variants. These findings provide evidence that low-frequency non-coding variants have large effects on BMD and fracture, thereby providing rationale for whole-genome sequencing and improved imputation reference panels to study the genetic architecture of complex traits and disease in the general population.
  •  
2.
  • Hart, R. G., et al. (författare)
  • Rivaroxaban for Stroke Prevention after Embolic Stroke of Undetermined Source
  • 2018
  • Ingår i: New England Journal of Medicine. - 0028-4793 .- 1533-4406. ; 378:23, s. 2191-2201
  • Tidskriftsartikel (refereegranskat)abstract
    • BACKGROUND Embolic strokes of undetermined source represent 20% of ischemic strokes and are associated with a high rate of recurrence. Anticoagulant treatment with rivaroxaban, an oral factor Xa inhibitor, may result in a lower risk of recurrent stroke than aspirin. We compared the efficacy and safety of rivaroxaban (at a daily dose of 15 mg) with aspirin (at a daily dose of 100 mg) for the prevention of recurrent stroke in patients with recent ischemic stroke that was presumed to be from cerebral embolism but without arterial stenosis, lacune, or an identified cardioembolic source. The primary efficacy outcome was the first recurrence of ischemic or hemorrhagic stroke or systemic embolism in a time-to-event analysis; the primary safety outcome was the rate of major bleeding. A total of 7213 participants were enrolled at 459 sites; 3609 patients were randomly assigned to receive rivaroxaban and 3604 to receive aspirin. Patients had been followed for a median of 11 months when the trial was terminated early because of a lack of benefit with regard to stroke risk and because of bleeding associated with rivaroxaban. The primary efficacy outcome occurred in 172 patients in the rivaroxaban group (annualized rate, 5.1%) and in 160 in the aspirin group (annualized rate, 4.8%) (hazard ratio, 1.07; 95% confidence interval [CI], 0.87 to 1.33; P=0.52). Recurrent ischemic stroke occurred in 158 patients in the rivaroxaban group (annualized rate, 4.7%) and in 156 in the aspirin group (annualized rate, 4.7%). Major bleeding occurred in 62 patients in the rivaroxaban group (annualized rate, 1.8%) and in 23 in the aspirin group (annualized rate, 0.7%) (hazard ratio, 2.72; 95% CI, 1.68 to 4.39; P<0.001). Rivaroxaban was not superior to aspirin with regard to the prevention of recurrent stroke after an initial embolic stroke of undetermined source and was associated with a higher risk of bleeding.
  •  
3.
  • Joyner, M. J., et al. (författare)
  • Neural Control of the Circulation: How Sex and Age Differences Interact in Humans
  • 2015
  • Ingår i: Comprehensive Physiology. - : Wiley. - 2040-4603. ; 5:1, s. 193-215
  • Tidskriftsartikel (refereegranskat)abstract
    • The autonomic nervous system is a key regulator of the cardiovascular system. In this review, we focus on how sex and aging influence autonomic regulation of blood pressure in humans in an effort to understand general issues related to the cardiovascular system as a whole. Younger women generally have lower blood pressure and sympathetic activity than younger men. However, both sexes show marked interindividual variability across age groups with significant overlap seen. Additionally, while men across the lifespan show a clear relationship between markers of whole body sympathetic activity and vascular resistance, such a relationship is not seen in young women. In this context, the ability of the sympathetic nerves to evoke vasoconstriction is lower in young women likely as a result of concurrent beta(2)-mediated vasodilation that offsets alpha-adrenergic vasoconstriction. These differences reflect both central sympatho-inhibitory effects of estrogen and also its influence on peripheral vasodilation at the level of the vascular smooth muscle and endothelium. By contrast postmenopausal women show a clear relationship between markers of whole body sympathetic traffic and vascular resistance, and sympathetic activity rises progressively in both sexes with aging. These major findings in humans are discussed in the context of differences in population-based trends in blood pressure and orthostatic intolerance. The many areas where there is little sex-specific data on how the autonomic nervous system participates in the regulation of the human cardiovascular system are highlighted. (C) 2015 American Physiological Society.
  •  
4.
  • Peinado, A. B., et al. (författare)
  • Neural control of blood pressure in women: differences according to age
  • 2017
  • Ingår i: Clinical Autonomic Research. - : Springer Science and Business Media LLC. - 0959-9851 .- 1619-1560. ; 27:3, s. 157-165
  • Tidskriftsartikel (refereegranskat)abstract
    • Purpose The blood pressure "error signal'' represents the difference between an individual's mean diastolic blood pressure and the diastolic blood pressure at which 50% of cardiac cycles are associated with a muscle sympathetic nerve activity burst (the "T50''). In this study we evaluated whether T50 and the error signal related to the extent of change in blood pressure during autonomic blockade in young and older women, to study potential differences in sympathetic neural mechanisms regulating blood pressure before and after menopause. Methods We measured muscle sympathetic nerve activity and blood pressure in 12 premenopausal (25 +/- 1 years) and 12 postmenopausal women (61 +/- 2 years) before and during complete autonomic blockade with trimethaphan camsylate. Results At baseline, young women had a negative error signal (-8 +/- 1 versus 2 +/- 1 mmHg, p < 0.001; respectively) and lower muscle sympathetic nerve activity (15 +/- 1 versus 33 +/- 3 bursts/min, p < 0.001; respectively) than older women. The change in diastolic blood pressure after autonomic blockade was associated with baseline T50 in older women (r = -0.725, p = 0.008) but not in young women (r = -0.337, p = 0.29). Women with the most negative error signal had the lowest muscle sympathetic nerve activity in both groups (young: r = 0.886, p < 0.001; older: r = 0.870, p < 0.001). Conclusions Our results suggest that there are differences in baroreflex control of muscle sympathetic nerve activity between young and older women, using the T50 and error signal analysis. This approach provides further information on autonomic control of blood pressure in women.
  •  
5.
  • Joyner, M. J., et al. (författare)
  • Sex differences and blood pressure regulation in humans
  • 2016
  • Ingår i: Experimental Physiology. - : Wiley. - 0958-0670. ; 101:3, s. 349-355
  • Tidskriftsartikel (refereegranskat)abstract
    • New Findings What is the topic of this review? Over the past decade, our team has investigated interindividual variability in human blood pressure regulation. What advances does it highlight? In men, we have found a tight relationship between indices of sympathetic activity and vascular resistance across the age span. This relationship is absent in young women but seen in postmenopausal women. These sex and age differences in vascular resistance are largely a result of changes in the balance of vasodilating and vasoconstricting adrenergic receptor tone. When these changes are considered along with cardiac output, a coherent picture is beginning to emerge of why blood pressure rises more with age in women than men. Arterial pressure is a key regulated variable in the cardiovascular system with important health implications. Over the last 12years, we have used physiological measurements, including muscle sympathetic nerve activity (MSNA), to explore the balance among mean arterial blood pressure, cardiac output and total peripheral resistance (TPR) in normotensive humans. We have shown that these determinants of blood pressure can vary widely in different subjects and how they vary depends on sex and age. In young men, there is a direct relationship between MSNA and TPR but no relationship with blood pressure. This is because cardiac output is proportionally lower in those with high MSNA and TPR. In contrast, in young women there is no relationship between MSNA and TPR (or cardiac output); this is because -adrenergic vasodilator mechanisms offset -adrenergic vasoconstriction. Thus, blood pressure is unrelated to MSNA in young women. In older women, -adrenergic vasodilator mechanisms are diminished, and a direct relationship between MSNA and TPR is seen. In older men, the relationships among these variables are less clear cut, perhaps owing to age-related alterations in endothelial function. With ageing, the relationship between MSNA and blood pressure becomes positive, more so in women than in men. The finding that the physiological control of blood pressure is so different in men and women and that it varies with age suggests that future studies of mechanisms of hypertension will reveal corresponding differences among groups.
  •  
6.
  • Stanford, K, et al. (författare)
  • Exercise Metabolism
  • 2017
  • Ingår i: Cell metabolism. - : Elsevier BV. - 1932-7420 .- 1550-4131. ; 25:5, s. 978-984
  • Tidskriftsartikel (refereegranskat)
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-6 av 6

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy