SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Juntti Berggren L.) srt2:(2020-2023)"

Sökning: WFRF:(Juntti Berggren L.) > (2020-2023)

  • Resultat 1-9 av 9
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Recio-Lopez, P, et al. (författare)
  • Apolipoprotein CIII Reduction Protects White Adipose Tissues against Obesity-Induced Inflammation and Insulin Resistance in Mice
  • 2022
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 23:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Apolipoprotein CIII (apoCIII) is proinflammatory and increases in high-fat diet (HFD)-induced obesity and insulin resistance. We have previously shown that reducing apoCIII improves insulin sensitivity in vivo by complex mechanisms involving liver and brown adipose tissue. In this study the focus was on subcutaneous (SAT) and visceral (VAT) white adipose tissue (WAT). Mice were either given HFD for 14 weeks and directly from start also treated with antisense oligonucleotide (ASO) against apoCIII or given HFD for 10 weeks and HFD+ASO for an additional 14 weeks. Both groups had animals treated with inactive (Scr) ASO as controls and in parallel chow-fed mice were injected with saline. Preventing an increase or lowering apoCIII in the HFD-fed mice decreased adipocytes’ size, reduced expression of inflammatory cytokines and increased expression of genes related to thermogenesis and beiging. Isolated adipocytes from both VAT and SAT from the ASO-treated mice had normal insulin-induced inhibition of lipolysis compared to cells from Scr-treated mice. In conclusion, the HFD-induced metabolic derangements in WATs can be prevented and reversed by lowering apoCIII.
  •  
6.
  •  
7.
  • Tun, SBB, et al. (författare)
  • Islet Transplantation to the Anterior Chamber of the Eye-A Future Treatment Option for Insulin-Deficient Type-2 Diabetics? A Case Report from a Nonhuman Type-2 Diabetic Primate
  • 2020
  • Ingår i: Cell transplantation. - : SAGE Publications. - 1555-3892 .- 0963-6897. ; 29, s. 963689720913256-
  • Tidskriftsartikel (refereegranskat)abstract
    • Replacement of the insulin-secreting beta cells through transplantation of pancreatic islets to the liver is a promising treatment for type-1 diabetes. However, low oxygen tension, shear stress, and the induction of inflammation lead to significant islet dysfunction and loss. The anterior chamber of the eye (ACE) has gained considerable interest and represents an alternative therapeutic islet transplantation site because of its accessibility, high oxygen tension, and immune-privileged milieu. We have previously demonstrated the feasibility of intraocular islet transplant in mouse and nonhuman primate models of type-1 diabetes and are now assessing its efficacy on glucose homeostasis in a nonhuman primate model of type-2 diabetes. We transplanted allogeneic donor islets (1,500 islet equivalents/kg) into the anterior chamber of one eye in a cynomolgus monkey with high-fat-diet-induced type-2 diabetes. Repeated examinations of the anterior and posterior segments of both eyes were done to monitor the engrafted islets and assess the overall ocular health. Fasting blood glucose level, blood biochemistry, and other metabolic parameters were routinely evaluated to determine the function of the islet graft and diabetes status. The transplanted islets were rapidly engrafted onto the iris and became vascularized 1 month after transplantation. We did not detect changes in intraocular pressure, cataract formation, ophthalmitis, or retinal vessel deformation. A significant lower fasting blood glucose level was observed while the graft was in place, and the transplantation reverts the progression of diabetes. The metabolic markers, hemoglobin A1C and fructosamine, demonstrated improvement following islet transplantation. As a conclusion, intraocular islet transplantation in one eye of a cynomolgus monkey with type-2 diabetes improved its overall plasma glucose homeostasis, as evidenced by short-term measures and long-term metabolic markers. These results further support the future application of the ACE as an alternative site for clinical islet transplants in the context of type-2 diabetes.
  •  
8.
  • Valladolid-Acebes, I, et al. (författare)
  • Apolipoprotein CIII Is an Important Piece in the Type-1 Diabetes Jigsaw Puzzle
  • 2021
  • Ingår i: International journal of molecular sciences. - : MDPI AG. - 1422-0067. ; 22:2
  • Tidskriftsartikel (refereegranskat)abstract
    • It is well known that type-2 diabetes mellitus (T2D) is increasing worldwide, but also the autoimmune form, type-1 diabetes (T1D), is affecting more people. The latest estimation from the International Diabetes Federation (IDF) is that 1.1 million children and adolescents below 20 years of age have T1D. At present, we have no primary, secondary or tertiary prevention or treatment available, although many efforts testing different strategies have been made. This review is based on the findings that apolipoprotein CIII (apoCIII) is increased in T1D and that in vitro studies revealed that healthy β-cells exposed to apoCIII became apoptotic, together with the observation that humans with higher levels of the apolipoprotein, due to mutations in the gene, are more susceptible to developing T1D. We have summarized what is known about apoCIII in relation to inflammation and autoimmunity in in vitro and in vivo studies of T1D. The aim is to highlight the need for exploring this field as we still are only seeing the top of the iceberg.
  •  
9.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-9 av 9

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy