SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Juusola Liisa) "

Sökning: WFRF:(Juusola Liisa)

  • Resultat 1-7 av 7
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Blanco-Cano, Xochitl, et al. (författare)
  • Cavitons and spontaneous hot flow anomalies in a hybrid-Vlasov global magnetospheric simulation
  • 2018
  • Ingår i: Annales Geophysicae. - : COPERNICUS GESELLSCHAFT MBH. - 0992-7689 .- 1432-0576. ; 36:4, s. 1081-1097
  • Tidskriftsartikel (refereegranskat)abstract
    • In this paper we present the first identification of foreshock cavitons and the formation of spontaneous hot flow anomalies (SHFAs) with the Vlasiator global magnetospheric hybrid-Vlasov simulation code. In agreement with previous studies we show that cavitons evolve into SHFAs. In the presented run, this occurs very near the bow shock. We report on SHFAs surviving the shock crossing into the down-stream region and show that the interaction of SHFAs with the bow shock can lead to the formation of a magnetosheath cavity, previously identified in observations and simulations. We report on the first identification of long-term local weakening and erosion of the bow shock, associated with a region of increased foreshock SHFA and caviton formation, and repeated shock crossings by them. We show that SHFAs are linked to an increase in suprathermal particle pitch-angle spreads. The realistic length scales in our simulation allow us to present a statistical study of global caviton and SHFA size distributions, and their comparable size distributions support the theory that SHFAs are formed from cavitons. Virtual spacecraft observations are shown to be in good agreement with observational studies.
  •  
2.
  • Juusola, Liisa, et al. (författare)
  • Drivers of rapid geomagnetic variations at high latitudes
  • 2023
  • Ingår i: Annales Geophysicae. - : Nicolaus Copernicus University Press. - 0992-7689 .- 1432-0576. ; 41:1, s. 13-37
  • Tidskriftsartikel (refereegranskat)abstract
    • We have examined the most intense external (magnetospheric and ionospheric) and internal (induced) |dH/dt| (amplitude of the 10gs time derivative of the horizontal geomagnetic field) events observed by the high-latitude International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometers between 1994 and 2018. While the most intense external |dH/dt| events at adjacent stations typically occurred simultaneously, the most intense internal (and total) |dH/dt| events were more scattered in time, most likely due to the complexity of induction in the conducting ground. The most intense external |dH/dt| events occurred during geomagnetic storms, among which the Halloween storm in October 2003 featured prominently, and drove intense geomagnetically induced currents (GICs). Events in the prenoon local time sector were associated with sudden commencements (SCs) and pulsations, and the most intense |dH/dt| values were driven by abrupt changes in the eastward electrojet due to solar wind dynamic pressure increase or decrease. Events in the premidnight and dawn local time sectors were associated with substorm activity, and the most intense |dH/dt| values were driven by abrupt changes in the westward electrojet, such as weakening and poleward retreat (premidnight) or undulation (dawn). Despite being associated with various event types and occurring at different local time sectors, there were common features among the drivers of most intense external |dH/dt| values: preexisting intense ionospheric currents (SC events were an exception) that were abruptly modified by sudden changes in the magnetospheric magnetic field configuration. Our results contribute towards the ultimate goal of reliable forecasts of dH/dt and GICs.
  •  
3.
  • Juusola, Liisa, et al. (författare)
  • Induced currents due to 3D ground conductivity play a major role in the interpretation of geomagnetic variations
  • 2020
  • Ingår i: Annales Geophysicae. - : Copernicus Publications. - 0992-7689 .- 1432-0576. ; 38:5, s. 983-998
  • Tidskriftsartikel (refereegranskat)abstract
    • Geomagnetically induced currents (GICs) are directly described by ground electric fields, but estimating them is time-consuming and requires knowledge of the ionospheric currents and the three-dimensional (3D) distribution of the electrical conductivity of the Earth. The time derivative of the horizontal component of the ground magnetic field (dH∕dt) is closely related to the electric field via Faraday's law and provides a convenient proxy for the GIC risk. However, forecasting dH∕dt still remains a challenge. We use 25 years of 10 s data from the northern European International Monitor for Auroral Geomagnetic Effects (IMAGE) magnetometer network to show that part of this problem stems from the fact that, instead of the primary ionospheric currents, the measured dH∕dt is dominated by the signature from the secondary induced telluric currents at nearly all IMAGE stations. The largest effects due to telluric currents occur at coastal sites close to high-conducting ocean water and close to near-surface conductivity anomalies. The secondary magnetic field contribution to the total field is a few tens of percent, in accordance with earlier studies. Our results have been derived using IMAGE data and are thus only valid for the stations involved. However, it is likely that the main principle also applies to other areas. Consequently, it is recommended that the field separation into internal (telluric) and external (ionospheric and magnetospheric) parts is performed whenever feasible (i.e., a dense observation network is available).
  •  
4.
  •  
5.
  • Lanabere, Vanina, et al. (författare)
  • Characterizing the distribution of extreme geoelectric field events in Sweden
  • 2024
  • Ingår i: Journal of Space Weather and Space Climate. - : EDP Sciences. - 2115-7251. ; 14
  • Tidskriftsartikel (refereegranskat)abstract
    • Historically, Sweden has reported several impacts on transformers and transmission lines related to geomagnetically induced currents (GICs) that develop during strong space weather events. GICs are driven by the geoelectric field (E), and their intensity depends on various factors, including the lithology conductivity and the rate of change of the Earth's magnetic field. The purpose of this study is to perform an extreme value (EV) analysis of the E magnitude at six different latitudes in Sweden and to express the maximum |E| that might be observed in 10, 50, and 100 years. We analyzed 10-s E data in Sweden, obtained from a 1-D model. This model incorporates 10-s geomagnetic measurements from the IMAGE network and the vertical Earth's ground electrical conductivity in Sweden, extracted from a 3-D conductance map for the Fennoscandian region. Extreme E events tend to occur in clusters around geomagnetic disturbances (substorms and geomagnetic storms). Therefore, we applied two different methods to decluster the data. After declustering, Generalized Pareto (GP) distributions were fitted to the remaining extreme events that exceeded the 99.5th percentile. The EV analysis indicates that the shape parameter of the GP distribution depends on latitude. This implies that at higher geographic latitudes (64.52-68.02°N) the distribution decreases faster toward zero than at lower latitudes (58.26-62.25°N). As a result the expected maximum |E| in 100 years in central Sweden ranges between 4.0 and 8.5 V/km, while at higher latitudes, it ranges between 2.0 and 2.5 V/km, similar to the modeled geoelectric field values during the Halloween event in October 2003. In particular, around 60.50 degrees N the distribution of extreme events exhibits the heaviest tail. When we additionally consider the effect of conductivity, the region of west Sweden around 60.50°N exhibits the largest expected maximum in 100 years with a value around 8.5 V/km. This is three times larger than the maximum modeled |E| at that latitude.
  •  
6.
  •  
7.
  • Schillings, Audrey, et al. (författare)
  • Signatures of wedgelets over Fennoscandia during the St Patrick s Day Storm 2015
  • 2023
  • Ingår i: Journal of Space Weather and Space Climate. - : EDP Sciences. - 2115-7251. ; 13
  • Tidskriftsartikel (refereegranskat)abstract
    • During the long main phase of the St Patrick's Day storm on March 17, 2015, we found three separate enhancements of the westward electrojet. These enhancements are observed in the ionospheric equivalent currents computed using geomagnetic data over Fennoscandia. Using data from the IMAGE magnetometer network, we identified localised field-aligned current (FAC) systems superimposed on the pre-existing ionospheric current system. We suggest that these localised current systems are wedgelets and that they can potentially contribute to a larger-scale structure of a substorm current wedge (SCW). Each wedgelet is associated with a negative BX spike. Each spike is recorded at a higher latitude than the former one and all three are very localised over Fennoscandia. The first spike occurred at 17:34 UT and was observed at Lycksele, R rvik and Nurmij rvi, the second spike was recorded at 17:41 UT and located at Lycksele and R rvik, whereas the last spike occurred at 17:47 UT and was observed at Kevo and Abisko. Simultaneous optical auroral data and electron injections at the geosynchronous orbit indicate that one or more substorms took place in the polar ionosphere at the time of the wedgelets. This study demonstrates the occurrence of small and short-lived structures such as wedgelets at different locations over a short time scale, 15 min in this case.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-7 av 7

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy