SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Köhler Jan) srt2:(2005-2009)"

Sökning: WFRF:(Köhler Jan) > (2005-2009)

  • Resultat 1-5 av 5
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Bruhn, Fredrik, 1976- (författare)
  • Miniaturized Multifunctional System Architecture for Satellites and Robotics
  • 2005
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • This thesis describes and evaluates the design of nanospacecraft based on advanced multifunctional microsystems building blocks. These systems bring substantial improvements of the performance of nanosatellites and enable new space exploration, e.g. interplanetary science missions using minute space probes. Microsystems, or microelectromechanical systems, allows for extreme miniaturization using heritage from IC industry. Reducing mass and volume of spacecraft gives large savings in terms of launch costs. Definition and categorization of system and module level features in multifunctional microsystems are used to derive a spacecraft optimization algorithm which is compatible with commonly used concurrent engineering methods. The miniaturization of modules enables modular spacecraft architectures comprising powerful multifunctional microsystems, which are applicable to satellites between 10 and 1000’s of kg. This kind of complete spacecraft architecture has been developed for the NanoSpace-1 technology demonstrator satellite. The spacecraft bus uses multifunctional design to enable distributed intelligence and autonomy, graceful degradation, functional surfaces, and distributed power systems. The increase in performance of the new spacecraft architecture as compared with conventional nanosatellites is orders of magnitudes in terms of power storage, scientific payload mass ratio, pointing stabilization, and long time space operation. This high-performance system-of-microsystems architecture has been successfully employed on two space robotic concepts: a miniaturized submersible vehicle for Jupiter’s Moon Europa and a miniaturized spherical robot. The submersible is enabled by miniaturization of electronics into 3-dimensional, vertically integrated multi-chip-modules together with new interconnection methods. These technologies enabled the submersible vehicle tube-shaped design within 20 cm length and 5 cm diameter. The spherical rover was developed for long range and networked science investigations of interplanetary bodies. The rover weighs 3.5 kg and is shown to endure direct reentry on Mars, which increases the ratio between the landed mobile payload mass and the initial mass in Mars orbit by a factor of 18.
  •  
2.
  •  
3.
  • Köhler, S. J., et al. (författare)
  • Dynamics of stream water TOC concentrations in a boreal headwater catchment : Controlling factors and implications for climate scenarios
  • 2009
  • Ingår i: Journal of Hydrology. - : Elsevier BV. - 0022-1694 .- 1879-2707. ; 373:1-2, s. 44-56
  • Tidskriftsartikel (refereegranskat)abstract
    • Two different but complementary modelling approaches for reproducing the observed dynamics of total organic carbon (TOC) in a boreal stream are presented. One is based on a regression analysis, while the other is based on riparian soil conditions using a convolution of flow and concentration. Both approaches are relatively simple to establish and help to identify gaps in the process understanding of the TOC transport from soils to catchments runoff. The largest part of the temporal variation of stream TOC concentrations (4-46 mg L-1) in a forested headwater stream in the boreal zone in northern Sweden may be described using a four-parameter regression equation that has runoff and transformed air temperature as sole input variables. Runoff is assumed to be a proxy for soil wetness conditions and changing flow pathways which in turn caused most of the stream TOC variation. Temperature explained a significant part of the observed inter-annual variability. Long-term riparian hydrochemistry in soil solutions within 4 m of the stream also captures a surprisingly large part of the observed variation of stream TOC and highlights the importance of riparian soils. The riparian zone was used to reproduce stream TOC with the help of a convolution model based on flow and average riparian chemistry as input variables. There is a significant effect of wetting of the riparian soil that translates into a memory effect for subsequent episodes and thus contributes to controlling stream TOC concentrations. Situations with high flow introduce a large amount of variability into stream water TOC that may be related to memory effects, rapid groundwater fluctuations and other processes not identified so far. Two different climate scenarios for the region based on the IPCC scenarios were applied to the regression equation to test what effect the expected increase in precipitation and temperature and resulting changes in runoff would have on stream TOC concentrations assuming that the soil conditions remain unchanged. Both scenarios resulted in a mean increase of stream TOC concentrations of between 1.5 and 2.5 mg L-1 during the snow free season, which amounts to approximately 15% more TOC export compared to present conditions. Wetter and warmer conditions in the late autumn led to a difference of monthly average TOC of up to 5 mg L-1, suggesting that stream TOC may be particularly susceptible to climate variability during this season.
  •  
4.
  • Ortgies, Robert, et al. (författare)
  • CHORUS Deliverable 3.3: Vision Document - Intermediate version
  • 2008. - 1
  • Annan publikation (övrigt vetenskapligt/konstnärligt)abstract
    • The goal of the CHORUS vision document is to create a high level vision on audio-visual search engines in order to give guidance to the future R&D work in this area (in line with the mandate of CHORUS as a Coordination Action). This current intermediate draft of the CHORUS vision document (D3.3) is based on the previous CHORUS vision documents D3.1 to D3.2 and on the results of the six CHORUS Think-Tank meetings held in March, September and November 2007 as well as in April, July and October 2008, and on the feedback from other CHORUS events. The outcome of the six Think-Thank meetings will not just be to the benefit of the participants which are stakeholders and experts from academia and industry – CHORUS, as a coordination action of the EC, will feed back the findings (see Summary) to the projects under its purview and, via its website, to the whole community working in the domain of AV content search. A few subjections of this deliverable are to be completed after the eights (and presumably last) Think-Tank meeting in spring 2009.
  •  
5.
  • Seibert, Jan, et al. (författare)
  • Linking soil- and stream-water chemistry based on a Riparian Flow-Concentration Integration Model
  • 2009
  • Ingår i: Hydrology and earth system sciences. - : Copernicus Publications. - 1607-7938 .- 1027-5606. ; 13:12, s. 2287-2297
  • Tidskriftsartikel (refereegranskat)abstract
    • The riparian zone, the last few metres of soil through which water flows before entering a gaining stream, has been identified as a first order control on key aspects of stream water chemistry dynamics. We propose that the distribution of lateral flow of water across the vertical profile of soil water chemistry in the riparian zone provides a conceptual explanation of how this control functions in catchments where matrix flow predominates. This paper presents a mathematical implementation of this concept as well as the model assumptions. We also present an analytical solution, which provides a physical basis for the commonly used power-law flow-load equation. This approach quantifies the concept of riparian control on stream-water chemistry providing a basis for testing the concept of riparian control. By backward calculation of soil-water-chemistry profiles, and comparing those with observed profiles we demonstrate that the simple juxtaposition of the vertical profiles of water flux and soil water chemistry provides a plausible explanation for observed variations in stream water chemistry of several major stream components such as Total Organic Carbon (TOC), magnesium, calcium and chloride. The "static" implementation of the model structure presented here provides a basis for further development to account for seasonal influences and hydrological hysteresis in the representation of hyporheic, riparian, and hillslope processes.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-5 av 5

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy