SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kalupin D.) srt2:(2015-2019)"

Sökning: WFRF:(Kalupin D.) > (2015-2019)

  • Resultat 1-8 av 8
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Overview of the JET results
  • 2015
  • Ingår i: Nuclear Fusion. - : IOP Publishing. - 0029-5515 .- 1741-4326. ; 55:10
  • Tidskriftsartikel (refereegranskat)
  •  
2.
  •  
3.
  •  
4.
  •  
5.
  • Pokol, Gergö, 1979, et al. (författare)
  • Runaway electron modelling in the self-consistent core European Transport Simulator
  • 2019
  • Ingår i: Nuclear Fusion. - : Institute of Physics Publishing (IOPP). - 0029-5515 .- 1741-4326. ; 59:7
  • Tidskriftsartikel (refereegranskat)abstract
    • Relativistic runaway electrons are a major concern in tokamaks. Although significant theoretical development had been undertaken in recent decades, we still lack a self-consistent simulator that could simultaneously capture all aspects of this phenomenon. The European framework for Integrated Modelling (EU-IM) facilitates the integration of different plasma simulation tools by providing a standard data structure for communication that enables relatively easy integration of different physics codes. A three-level modelling approach was adopted for runaway electron simulations within the EU-IM. Recently, a number of runaway electron modelling modules have been integrated into this framework. The first level of modelling (Runaway Indicator) is limited to the indication if runaway electron generation is possible or likely. The second level (Runaway Fluid) adopts an approach similar to e.g. the GO code, using analytical formulas to estimate changes in the runaway electron current density. The third level is based on the solution of the electron kinetics. One such code is LUKE that can handle the toroidicity-induced effects by solving the bounce-averaged Fokker-Planck equation. Another approach is used in NORSE, which features a fully nonlinear collision operator that makes it capable of simulating major changes in the electron distribution, for example slide-away. Both codes handle the effect of radiation on the runaway distribution. These runaway-electron modelling codes are in different stages of integration into the EU-IM infrastructure, and into the European Transport Simulator (ETS), which is a fully capable modular 1.5D core transport simulator. The ETS with Runaway Fluid was benchmarked to the GO code implementing similar physics. Coherent integration of kinetic solvers requires more effort on the coupling, especially regarding the definition of the boundary between runaway and thermal populations, and on consistent calculation of resistivity. Some of these issues are discussed.
  •  
6.
  •  
7.
  • Owsiak, M., et al. (författare)
  • Running simultaneous Kepler sessions for the parallelization of parametric scans and optimization studies applied to complex workflows
  • 2016
  • Ingår i: Procedia Computer Science. - : Elsevier. - 1877-0509. ; , s. 690-699
  • Konferensbidrag (refereegranskat)abstract
    • In this paper we present an approach taken to run multiple Kepler sessions at the same time. This kind of execution is one of the requirements for Integrated Tokamak Modelling platform developed by the Nuclear Fusion community within the context of EUROFusion project [2]. The platform is unique and original: it entails the development of a comprehensive and completely generic tokamak simulator including both the physics and the machine, which can be applied for any fusion device. All components are linked inside work ows. This approach allows complex coupling of various algorithms while at the same time provides consistency. Work ows are composed of Kepler and Ptolemy II elements as well as set of the native libraries written in various languages (Fortran, C, C++). In addition to that, there are Python based components that are used for visualization of results as well as for pre/post processing. At the bottom of all these components there is a database layer that may vary between software releases, and require di erent version of access libraries. The community is using shared virtual research environment to prepare and execute work ows. All these constraints make running multiple Kepler sessions really challenging. However, ability to run numerous sessions in parallel is a must - to reduce computation time and to make it possible to run released codes while working with new software at the same time. In this paper we present our approach to solve this issue and examples that show its correctness.
  •  
8.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-8 av 8

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy