SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kanchiralla Fayas Malik 1989) srt2:(2022)"

Sökning: WFRF:(Kanchiralla Fayas Malik 1989) > (2022)

  • Resultat 1-2 av 2
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Kanchiralla, Fayas Malik, 1989, et al. (författare)
  • Life-Cycle Assessment and Costing of Fuels and Propulsion Systems in Future Fossil-Free Shipping
  • 2022
  • Ingår i: Environmental Science and Technology. - : American Chemical Society (ACS). - 0013-936X .- 1520-5851. ; 56:17, s. 12517-12531
  • Tidskriftsartikel (refereegranskat)abstract
    • Future ships need to operate with low or possibly zero greenhouse gas (GHG) emissions while ensuring low influence on other environmental impacts and that the operation is economically feasible.This study conducts a life-cycle evaluation of potential decarbonization solutions involving selected energy carriers (electrolytic hydrogen, electro-ammonia, electro-methanol, and electricity) in different propulsion system setups (engines, fuel cells, and carbon capture technologies) in terms of environmental impact and costs.The results of the study show that the assessed decarbonization options are promising measures to reduce maritime GHG emissions with low-carbon-intensive electricity.The same order of GHG reduction is shown to be possible independent of the propulsion system and energy carrier used onboard.However, the carbon abatement cost ranges from 300 to 550 €/tCO2eq, and there is a trade-off with environmental impacts such as human toxicity (cancer and non-cancer effects) and freshwater ecotoxicity mainly linked with the wind infrastructure used for electricity production.Electro-ammonia in fuel cells is indicated to be effective in terms of the carbon abatement cost followed by the so-called HyMethShip concept.The higher abatement cost of all options compared to current options indicates that major incentives and policy measures are required to promote the introduction of alternative fuel and propulsion systems.
  •  
2.
  • Thaler, Bernhard, et al. (författare)
  • Optimal design and operation of maritime energy systems based on renewable methanol and closed carbon cycles
  • 2022
  • Ingår i: Energy Conversion and Management. - : Elsevier BV. - 0196-8904. ; 269
  • Tidskriftsartikel (refereegranskat)abstract
    • The phasing out of fossil fuels in the shipping sector is of key importance for reducing greenhouse gas emissions. Synthetic fuels based on renewable energy are a promising option for a sustainable maritime sector, with renewable methanol being one of the most widely considered energy carriers. However, the availability of renewable methanol is still limited and the costs associated with it are significantly higher than for conventional fuels, also because fuel synthesis must rely on carbon dioxide as a resource. Through the use of onboard carbon capture, the release of carbon dioxide during combustion can be avoided, and this closed cycle reduces the need for carbon sources. This paper investigates such a scenario by analyzing overall ship energy systems that use internal combustion engines with connected pre-combustion and post-combustion carbon capture technologies. The effect of these technologies on the techno-economic performance of a fully renewable energy system is investigated by setting up a mixed-integer optimization framework for the optimal design and operation of ship propulsion systems. The propulsion demand for the chosen case study consists of a typical operational profile of a ferry operating in the Baltic Sea. Comparison of the capture cases to a system solely based on renewable methanol reveals significant cost advantages of the closed carbon cycle systems. The baseline scenario has nearly 20% lower annual costs, with total capture rates of 90% in the post-combustion case and around 40% in the pre-combustion case. An extensive sensitivity analysis shows that these cost advantages are robust against various technological and economic boundary conditions. In the pre-combustion case, process heat demand reduction in combination with increased engine heat supply might enable higher capture rates beyond 90%. The results indicate that combining renewable fuels with onboard carbon capture creates opportunities for cost-effective, sustainable shipping.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-2 av 2

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy