SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kang Matthew) srt2:(2020-2024)"

Sökning: WFRF:(Kang Matthew) > (2020-2024)

  • Resultat 1-10 av 16
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Beal, Jacob, et al. (författare)
  • Robust estimation of bacterial cell count from optical density
  • 2020
  • Ingår i: Communications Biology. - : Springer Science and Business Media LLC. - 2399-3642. ; 3:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data.
  •  
2.
  • Abazajian, Kevork, et al. (författare)
  • CMB-S4 : Forecasting Constraints on Primordial Gravitational Waves
  • 2022
  • Ingår i: Astrophysical Journal. - : American Astronomical Society. - 0004-637X .- 1538-4357. ; 926:1
  • Tidskriftsartikel (refereegranskat)abstract
    • CMB-S4—the next-generation ground-based cosmic microwave background (CMB) experiment—is set to significantly advance the sensitivity of CMB measurements and enhance our understanding of the origin and evolution of the universe. Among the science cases pursued with CMB-S4, the quest for detecting primordial gravitational waves is a central driver of the experimental design. This work details the development of a forecasting framework that includes a power-spectrum-based semianalytic projection tool, targeted explicitly toward optimizing constraints on the tensor-to-scalar ratio, r, in the presence of Galactic foregrounds and gravitational lensing of the CMB. This framework is unique in its direct use of information from the achieved performance of current Stage 2–3 CMB experiments to robustly forecast the science reach of upcoming CMB-polarization endeavors. The methodology allows for rapid iteration over experimental configurations and offers a flexible way to optimize the design of future experiments, given a desired scientific goal. To form a closed-loop process, we couple this semianalytic tool with map-based validation studies, which allow for the injection of additional complexity and verification of our forecasts with several independent analysis methods. We document multiple rounds of forecasts for CMB-S4 using this process and the resulting establishment of the current reference design of the primordial gravitational-wave component of the Stage-4 experiment, optimized to achieve our science goals of detecting primordial gravitational waves for r > 0.003 at greater than 5σ, or in the absence of a detection, of reaching an upper limit of r < 0.001 at 95% CL.
  •  
3.
  • Belov, Vladimir, et al. (författare)
  • Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
  • 2024
  • Ingår i: Scientific Reports. - : NATURE PORTFOLIO. - 2045-2322. ; 14:1
  • Tidskriftsartikel (refereegranskat)abstract
    • Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects.
  •  
4.
  • Campbell, PJ, et al. (författare)
  • Pan-cancer analysis of whole genomes
  • 2020
  • Ingår i: Nature. - : Springer Science and Business Media LLC. - 1476-4687 .- 0028-0836. ; 578:7793, s. 82-
  • Tidskriftsartikel (refereegranskat)abstract
    • Cancer is driven by genetic change, and the advent of massively parallel sequencing has enabled systematic documentation of this variation at the whole-genome scale1–3. Here we report the integrative analysis of 2,658 whole-cancer genomes and their matching normal tissues across 38 tumour types from the Pan-Cancer Analysis of Whole Genomes (PCAWG) Consortium of the International Cancer Genome Consortium (ICGC) and The Cancer Genome Atlas (TCGA). We describe the generation of the PCAWG resource, facilitated by international data sharing using compute clouds. On average, cancer genomes contained 4–5 driver mutations when combining coding and non-coding genomic elements; however, in around 5% of cases no drivers were identified, suggesting that cancer driver discovery is not yet complete. Chromothripsis, in which many clustered structural variants arise in a single catastrophic event, is frequently an early event in tumour evolution; in acral melanoma, for example, these events precede most somatic point mutations and affect several cancer-associated genes simultaneously. Cancers with abnormal telomere maintenance often originate from tissues with low replicative activity and show several mechanisms of preventing telomere attrition to critical levels. Common and rare germline variants affect patterns of somatic mutation, including point mutations, structural variants and somatic retrotransposition. A collection of papers from the PCAWG Consortium describes non-coding mutations that drive cancer beyond those in the TERT promoter4; identifies new signatures of mutational processes that cause base substitutions, small insertions and deletions and structural variation5,6; analyses timings and patterns of tumour evolution7; describes the diverse transcriptional consequences of somatic mutation on splicing, expression levels, fusion genes and promoter activity8,9; and evaluates a range of more-specialized features of cancer genomes8,10–18.
  •  
5.
  •  
6.
  • Dima, Danai, et al. (författare)
  • Subcortical volumes across the lifespan : Data from 18,605 healthy individuals aged 3-90 years.
  • 2022
  • Ingår i: Human Brain Mapping. - : Wiley. - 1065-9471 .- 1097-0193. ; 43:1, s. 452-469
  • Tidskriftsartikel (refereegranskat)abstract
    • Age has a major effect on brain volume. However, the normative studies available are constrained by small sample sizes, restricted age coverage and significant methodological variability. These limitations introduce inconsistencies and may obscure or distort the lifespan trajectories of brain morphometry. In response, we capitalized on the resources of the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to examine age-related trajectories inferred from cross-sectional measures of the ventricles, the basal ganglia (caudate, putamen, pallidum, and nucleus accumbens), the thalamus, hippocampus and amygdala using magnetic resonance imaging data obtained from 18,605 individuals aged 3-90 years. All subcortical structure volumes were at their maximum value early in life. The volume of the basal ganglia showed a monotonic negative association with age thereafter; there was no significant association between age and the volumes of the thalamus, amygdala and the hippocampus (with some degree of decline in thalamus) until the sixth decade of life after which they also showed a steep negative association with age. The lateral ventricles showed continuous enlargement throughout the lifespan. Age was positively associated with inter-individual variability in the hippocampus and amygdala and the lateral ventricles. These results were robust to potential confounders and could be used to examine the functional significance of deviations from typical age-related morphometric patterns.
  •  
7.
  • Eratne, Dhamidhu, et al. (författare)
  • Cerebrospinal fluid neurofilament light chain differentiates behavioural variant frontotemporal dementia progressors from non-progressors
  • 2022
  • Ingår i: Journal of the Neurological Sciences. - : Elsevier BV. - 0022-510X. ; 442
  • Tidskriftsartikel (refereegranskat)abstract
    • Background: Distinguishing behavioural variant frontotemporal dementia (bvFTD) from non-neurodegenerative ‘non-progressor’ mimics of frontal lobe dysfunction, can be one of the most challenging clinical dilemmas. A biomarker of neuronal injury, neurofilament light chain (NfL), could reduce misdiagnosis and delay. Methods: Cerebrospinal fluid (CSF) NfL, amyloid beta 1–42 (AB42), total and phosphorylated tau (T-tau, P-tau) levels were examined in patients with an initial diagnosis of bvFTD. Based on follow-up information, patients were categorised as Progressors or Non-Progressors: further subtyped into Non-Progressor Revised (non-neurological/neurodegenerative final diagnosis), and Non-Progressor Static (static deficits, not fully explained by non-neurological/neurodegenerative causes). Results: Forty-three patients were included: 20 Progressors, 23 Non-Progressors (15 Non-Progressor Revised, 8 Non-Progressor Static), and 20 controls. NfL concentrations were lower in Non-Progressors (Non-Progressors Mean, M = 554 pg/mL, 95%CI:[461, 675], Non-Progressor Revised M = 459 pg/mL, 95%CI:[385, 539], and Non-Progressor Static M = 730 pg/mL, 95%CI:[516, 940]), compared to Progressors (M = 2397 pg/mL, 95%CI:[1607, 3332]). NfL distinguished Progressors from Non-Progressors with the highest accuracy (area under the curve 0.92, 90%/87% sensitivity/specificity, 86%/91% positive/negative predictive value, 88% accuracy). Non-Progressor Static tended to have higher T-tau and P-tau levels compared to Non-Progressor Revised Diagnoses. Conclusion: This study demonstrated strong diagnostic utility of CSF NfL to distinguish bvFTD from non-progressor variants, at baseline, with high accuracy, in a real-world clinical setting. This has important clinical implications, to improve outcomes for patients and clinicians facing this challenging clinical dilemma, healthcare services, and clinical trials. Further research is required to investigate heterogeneity within the non-progressor group and potential diagnostic algorithms, and prospective studies are underway assessing plasma NfL.
  •  
8.
  • Frangou, Sophia, et al. (författare)
  • Cortical thickness across the lifespan : Data from 17,075 healthy individuals aged 3-90 years
  • 2022
  • Ingår i: Human Brain Mapping. - : John Wiley & Sons. - 1065-9471 .- 1097-0193. ; 43:1, s. 431-451
  • Tidskriftsartikel (refereegranskat)abstract
    • Delineating the association of age and cortical thickness in healthy individuals is critical given the association of cortical thickness with cognition and behavior. Previous research has shown that robust estimates of the association between age and brain morphometry require large-scale studies. In response, we used cross-sectional data from 17,075 individuals aged 3-90 years from the Enhancing Neuroimaging Genetics through Meta-Analysis (ENIGMA) Consortium to infer age-related changes in cortical thickness. We used fractional polynomial (FP) regression to quantify the association between age and cortical thickness, and we computed normalized growth centiles using the parametric Lambda, Mu, and Sigma method. Interindividual variability was estimated using meta-analysis and one-way analysis of variance. For most regions, their highest cortical thickness value was observed in childhood. Age and cortical thickness showed a negative association; the slope was steeper up to the third decade of life and more gradual thereafter; notable exceptions to this general pattern were entorhinal, temporopolar, and anterior cingulate cortices. Interindividual variability was largest in temporal and frontal regions across the lifespan. Age and its FP combinations explained up to 59% variance in cortical thickness. These results may form the basis of further investigation on normative deviation in cortical thickness and its significance for behavioral and cognitive outcomes.
  •  
9.
  •  
10.
  • Kang, Matthew J.Y., et al. (författare)
  • Cerebrospinal fluid neurofilament light predicts longitudinal diagnostic change in patients with psychiatric and neurodegenerative disorders
  • 2023
  • Ingår i: Acta Neuropsychiatrica. - 0924-2708. ; 36:1, s. 17-28
  • Tidskriftsartikel (refereegranskat)abstract
    • Objective People with neuropsychiatric symptoms often experience delay in accurate diagnosis. Although cerebrospinal fluid neurofilament light (CSF NfL) shows promise in distinguishing neurodegenerative disorders (ND) from psychiatric disorders (PSY), its accuracy in a diagnostically challenging cohort longitudinally is unknown. Methods We collected longitudinal diagnostic information (mean=36 months) from patients assessed at a neuropsychiatry service, categorising diagnoses as ND/mild cognitive impairment/other neurological disorders (ND/MCI/other), and PSY. We pre-specified NfL>582pg/mL as indicative of ND/MCI/other. Results Diagnostic category changed from initial to final diagnosis for 23% (49/212) of patients. NfL predicted the final diagnostic category for 92% (22/24) of these and predicted final diagnostic category overall (ND/MCI/other vs. PSY) in 88% (187/212), compared to 77% (163/212) with clinical assessment alone. Conclusions CSF NfL improved diagnostic accuracy, with potential to have led to earlier, accurate diagnosis in a real-world setting using a pre-specified cut-off, adding weight to translation of NfL into clinical practice.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 16
Typ av publikation
tidskriftsartikel (14)
forskningsöversikt (1)
Typ av innehåll
refereegranskat (14)
övrigt vetenskapligt/konstnärligt (1)
Författare/redaktör
Ching, Christopher R ... (4)
Sim, Kang (4)
Pomarol-Clotet, Edit ... (4)
Thomopoulos, Sophia ... (4)
Thompson, Paul M (4)
Aghajani, Moji (4)
visa fler...
Reif, Andreas (4)
Franke, Barbara (3)
Wu, Y. (3)
Haider, S. (3)
Kumar, S (3)
Hayashi, S. (3)
Agartz, Ingrid (3)
Akudjedu, Theophilus ... (3)
Alnæs, Dag (3)
Brouwer, Rachel M (3)
Canales-Rodríguez, E ... (3)
Cannon, Dara M (3)
McDonald, Colm (3)
Radua, Joaquim (3)
Salvador, Raymond (3)
Sarró, Salvador (3)
Westlye, Lars T (3)
Andreassen, Ole A (3)
Hasegawa, T. (3)
Tanaka, H. (3)
Lathrop, M (3)
Johnson, R (3)
Miyano, S (3)
Lee, JY (3)
Smith, J. (3)
Veer, Ilya M. (3)
van der Wee, Nic J. ... (3)
Williams, A (3)
Wang, Lei (3)
Davies, H (3)
Torrents, D (3)
Schreiber, S (3)
de Geus, Eco J. C. (3)
Martin, Nicholas G. (3)
Boomsma, Dorret I. (3)
Heslenfeld, Dirk J. (3)
Brunak, S. (3)
Bertolino, Alessandr ... (3)
Di Giorgio, Annabell ... (3)
Pergola, Giulio (3)
Wang, Yang (3)
Ng, A (3)
Mataix-Cols, David (3)
Nyberg, Lars, 1966- (3)
visa färre...
Lärosäte
Karolinska Institutet (7)
Lunds universitet (6)
Uppsala universitet (5)
Göteborgs universitet (3)
Umeå universitet (3)
Stockholms universitet (1)
visa fler...
Linköpings universitet (1)
Chalmers tekniska högskola (1)
visa färre...
Språk
Engelska (16)
Forskningsämne (UKÄ/SCB)
Medicin och hälsovetenskap (10)
Naturvetenskap (3)
Teknik (1)

År

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy