SwePub
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "WFRF:(Kangasharju Jussi Professor) srt2:(2021)"

Sökning: WFRF:(Kangasharju Jussi Professor) > (2021)

  • Resultat 1-3 av 3
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Corneo, Lorenzo (författare)
  • Networked Latency Sensitive Applications - Performance Issues between Cloud and Edge
  • 2021
  • Doktorsavhandling (övrigt vetenskapligt/konstnärligt)abstract
    • The increasing demand for industrial automation has motivated the development of applications with strict latency requirements, namely, latency-sensitive applications. Such latency requirements can be satisfied by offloading computationally intensive tasks to powerful computing devices over a network at the cost of additional communication latency. Two major computing paradigms are considered for this: (i) cloud computing and (ii) edge computing. Cloud computing provides computation at remote datacenters, at the cost of longer communication latency. Edge computing aims at reducing communication latency by bringing computation closer to the users.  This doctoral dissertation mainly investigates relevant issues regarding communication latency trade-offs between the aforementioned paradigms in the context of latency-sensitive applications.This work advances the state of the art with three major contributions. First, we design a suite of scheduling algorithms which are performed on an edge device interposed between a co-located sensor network and remote applications running in cloud datacenters. These algorithms guarantee the fulfillment of latency-sensitive applications' requirements while maximizing the battery life of sensing devices.  Second, we estimate under what conditions latency-sensitive applications can be executed in cloud environments. From a broader perspective, we quantify round-trip times needed to access cloud datacenters all around the world. From a narrower perspective, we collect latency measurements to cloud datacenters in metropolitan areas where over 70% of the world's population lives. This Internet-wide large-scale measurements campaign allows us to draw statistically relevant conclusions concerning the readiness of the cloud environments to host latency-sensitive applications. Finally, we devise a method to quantify latency improvements that hypothetical edge server deployments could bring to users within a network. This is achieved with a thorough analysis of round-trip times and paths characterization resulting in the design of novel edge server placement algorithms. We show trade-offs between number of edge servers deployed and latency improvements experienced by users.This dissertation contributes to the understanding of the communication latency in terms of temporal and spacial distributions, its sources and implications on latency-sensitive applications.
  •  
2.
  • Corneo, Lorenzo, et al. (författare)
  • (How Much) Can Edge Computing Change Network Latency?
  • 2021
  • Ingår i: 2021 IFIP Networking Conference (IFIP Networking). - : Institute of Electrical and Electronics Engineers (IEEE). - 9781665445016 - 9783903176393 ; , s. 1-9
  • Konferensbidrag (refereegranskat)abstract
    • Edge computing aims to enable applications with stringent latency requirements, e.g., augmented reality, and tame the overwhelming data streams generated by IoT devices. A core principle of this paradigm is to bring the computation from a distant cloud closer to service consumers and data producers. Consequentially, the issue of edge computing facilities’ placement arises. We present a comprehensive analysis suggesting where to place general-purpose edge computing resources on an Internet-wide scale. We base our conclusions on extensive real-world network measurements. We perform extensive traceroute measurements from RIPE Atlas to datacenters in the US, resulting in a graph of 11K routers. We identify the affiliations of the routers to determine the network providers that can act as edge providers. We devise several edge placement strategies and show that they can improve cloud access latency by up to 30%.
  •  
3.
  • Corneo, Lorenzo, et al. (författare)
  • Surrounded by the Clouds : A Comprehensive Cloud Reachability Study
  • 2021
  • Ingår i: Proceedings Of The World Wide Web Conference 2021 (WWW 2021). - New York, NY, USA : Association for Computing Machinery (ACM). - 9781450383127 ; , s. 295-304, s. 295-304
  • Konferensbidrag (refereegranskat)abstract
    • In the early days of cloud computing, datacenters were sparsely deployed at distant locations far from end-users with high end-toend communication latency. However, today's cloud datacenters have become more geographically spread, the bandwidth of the networks keeps increasing, pushing the end-users latency down. In this paper, we provide a comprehensive cloud reachability study as we perform extensive global client-to-cloud latency measurements towards 189 datacenters from all major cloud providers. We leverage the well-known measurement platform RIPE Atlas, involving up to 8500 probes deployed in heterogeneous environments, e.g., home and offices. Our goal is to evaluate the suitability of modern cloud environments for various current and predicted applications. We achieve this by comparing our latency measurements against known human perception thresholds and are able to draw inferences on the suitability of current clouds for novel applications, such as augmented reality. Our results indicate that the current cloud coverage can easily support several latency-critical applications, like cloud gaming, for the majority of the world's population.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-3 av 3

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy